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ABSTRACT

Recent advances in neural network training provide a way to
efficiently learn representations from raw data. Good rep-
resentations are an important requirement for Music Infor-
mation Retrieval (MIR) tasks to be performed successfully.
However, a major problem with neural networks is that train-
ing time becomes prohibitive for very large datasets and the
learning algorithm can get stuck in local minima for very deep
and wide network architectures. In this paper we examine 3
ways to improve feature learning for audio data using neu-
ral networks: 1.using Rectified Linear Units (ReLUs) instead
of standard sigmoid units; 2.using a powerful regularisation
technique called Dropout; 3.using Hessian-Free (HF) optimi-
sation to improve training of sigmoid nets. We show that these
methods provide significant improvements in training time
and the features learnt are better than state of the art hand-
crafted features, with a genre classification accuracy of 83
± 1.1% on the Tzanetakis (GTZAN) dataset. We found that
the rectifier networks learnt better features than the sigmoid
networks. We also demonstrate the capacity of the features
to capture relevant information from audio data by applying
them to genre classification on the ISMIR 2004 dataset.

Index Terms— Deep Learning, Neural Networks, MIR.

1. INTRODUCTION

Most MIR classification tasks use a common pipeline which
consists of feature extraction followed by classification. This
pipeline assumes that the features capture all the relevant in-
formation for a particular task. The features that are extracted
are often “hand-crafted”, a process that requires significant
domain knowledge and engineering ingenuity. Recently, the
slow progress in improving the accuracy of MIR tasks has
been attributed to the use of hand-engineered features [15]
and there have been several studies that explore feature learn-
ing for music audio data [17, 10, 12].

Stochastic Gradient Descent (SGD) has been used for
training neural networks for the last 25 years. Although it
has many advantages like ease of implementation and good
convergence, there are also several drawbacks. One of the
drawbacks is that the algorithm does not scale very well to

large datasets. The algorithm can go through hundreds of
thousands of iterations to converge to acceptable solutions on
large datasets. SGD can also underfit the data if the network is
very deep, a problem that had plagued training of deep neural
networks up until the recent use of layer-wise unsupervised
pre-training [13].

Recently, it has been found that the performance of SGD
can be improved by using Rectified Linear Units (ReLUs)
[20, 9]. These rectifier networks converge to similar and
sometimes better solutions than the traditional sigmoid nets.
In this study, we evaluate using ReLUs and directly train-
ing the network with SGD, without any unsupervised pre-
training. However, ReLUs tend to overfit the data at times.
Dropout is a powerful regularisation technique that helps re-
duce the generalization error [14]. Rectifier networks when
combined with Dropout are known to generalize well.

It would be interesting to be able to compare the features
learnt by rectifier nets to the features learnt by sigmoid nets.
However, deep sigmoid networks are harder to optimize with
SGD because of the non-linearity of the objective with re-
spect to the parameters. SGD also takes a very large number
of iterations to train sigmoid nets, making training time pro-
hibitively large [10]. Recently, Martens proposed a powerful
new method for training neural networks, called Hessian Free
(HF) optimisation [18]. HF is a second order optimisation
technique that has proved to be very effective for training deep
and recurrent neural networks [19]. HF also offers other prac-
tical advantages like significant reduction in the number of
hyper-parameters and a substantial reduction in training time.

In this paper we learn features from audio data from the
GTZAN dataset using both sigmoid and rectifier neural net-
works. We show that SGD can be used to train ReLU nets
efficiently. We also use Hessian Free optimisation to train sig-
moid nets and compare their performance with rectifier net-
works. We find that HF is very efficient for training sigmoid
networks and provides good solutions with a significant re-
duction in training time as compared to SGD. We also find
that the rectifier nets with Dropout performed better than the
sigmoid nets. We then apply the two types of learnt features to
a genre classification problem on the ISMIR 2004 dataset and
show that the learnt features perform better than hand-crafted
features.
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The rest of the paper is organized as follows. In section
2 we describe ReLUs, Dropout and HF. Section 3 describes
the details of the experimental setup and the results. Finally,
conclusions and ideas for future work are presented in section
4.

2. BACKGROUND

2.1. Rectified Linear Units

Recently, there has been a large amount of evidence demon-
strating the advantages of using ReLUs over the traditional
sigmoid units [20, 9]. These advantages include good conver-
gence without the need for any pre-training, naturally sparse
features in the hidden layers [9] and overcoming the problem
of vanishing gradients [8, 2]. The ReLU activation function is
defined as f(x) = max(0, x). Unlike sigmoid units, ReLUs
do not saturate at 1 and the partial derivative of the activa-
tion function with respect to the model parameters is never 0,
provided the neuron is active. The hidden layer activations of
ReLU nets have a hard sparsity, since the units cut off below
0. This is useful if the hidden unit activations are used as fea-
tures. Neural nets with ReLUs as hidden units can reach the
same error level on the training set much faster than sigmoid
nets [16]. This is advantageous since it allows experimenta-
tion with much larger network architectures, which would not
be possible using sigmoid nets trained with SGD.

2.2. Dropout

Although ReLUs have several properties that make them de-
sirable as hidden units for deep neural nets, they tend to over-
fit the training data. Overfitting is a common problem with
networks of large capacity and is generally solved by using
various regularisation techniques [6]. Dropout is a regularisa-
tion technique which was introduced in [14]. Dropout when
used with ReLUs reduces the problem of overfitting to the
training data.

Dropout adds noise to the network during training by
dropping out or removing a predetermined percentage of ac-
tivations in each layer. The units that are dropped out are cho-
sen at random. Therefore training a network with dropout is
the same as training an ensemble of “thinned”or sub-sampled
neural networks that share parameters. There are two ways of
interpreting the way dropout modifies training. The first one
is that Dropout avoids complex co-adaptations of the features
to the training data. The second interpretation of Dropout is
that it is similar to model averaging. Our implementation of
Dropout follows the details outlined in [7].

2.3. Hessian Free optimisation

Sigmoid nets are hard to train with SGD because the error sur-
face defined by the loss function is very complex due to the
sigmoid non-linearities at each layer. This problem becomes
worse as the depth of the network increases. Greater depth

also leads to issues like vanishing gradients due to the satura-
tion of the sigmoid function. There have been attempts to fix
this by using different learning rates for different layers, adap-
tive schedules for the learning rate and momentum. However
for sufficiently deep networks SGD proves to be inadequate.
Hessian Free (HF) optimisation is a second order optimisa-
tion technique that aims to minimize an objective function
f(θ) with respect to the parameters θ. The algorithm itera-
tively updates the parameters at every step by optimizing a
local approximation to the objective. More specifically, the
local approximation to the objective function at some itera-
tion n is defined as:

Mθn = f(θn) + f ′(θn)ᵀδn + δᵀ
nBδn/2 (1)

In equation 1, B is the Gauss-Newton matrix which is used
instead of the Hessian and δn are the search directions for
updating the parameters θn. Although Hessian Free meth-
ods have existed in literature and have been studied for a
long time, they were grossly impractical for applications to
machine learning problems until recently. In [18], Martens
makes several modifications to the earlier approaches and de-
velops a version of Hessian Free that can be applied effec-
tively to train very deep networks. HF uses the method of
Conjugate Gradients (CG) to find a solution to equation 1 at
each step. CG is very sensitive to the form of the curvature
matrix and small batches of data are ineffective for training.
In general, very large batches of data are used for each it-
eration of HF. Apart from better performance of CG, using
large datasets significantly reduces the number of iterations
required to train a network. Another advantage of using HF
is that it greatly reduces the number of hyper-parameters that
need to be tuned for useful solutions. In our experiments, we
use HF to train sigmoid nets and compare the performance
with rectifier networks.

3. EXPERIMENTS

In this section we describe the experimental details and the
results. Two datasets were used for the experiments, the
GTZAN dataset [24] and the ISMIR 2004 Genre dataset [1].
Although the GTZAN dataset has some shortcomings [22], it
has been used as a benchmark for genre classification tasks.
The GTZAN dataset consists of 1000, 30-second examples
with 100 examples for each of the 10 genres. The ISMIR
2004 dataset consists of 729 examples over 6 genres for train-
ing and 729 songs for development/validation. The tracks
from the ISMIR 2004 dataset were down-sampled to 22500
Hz and the first 30 seconds from each song were kept. The
GTZAN dataset was split into four 50/25/25 train, validation,
test splits. For all experiments with the GTZAN dataset, the
training and validation sets were first used to train the neural
network. The neural network was then used to extract fea-
tures from the data and a classifier was trained on the features
extracted from the training and validation set. The results
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No-Aggregation Aggregation
Hidden Units Layer ReLU+SGD ReLU+SGD+Dropout Sigmoid + HF ReLU+SGD ReLU+SGD+Dropout Sigmoid + HF

1 75.0±1.3 75.0±1.4 71.8±0.2 75.0±1.7 76.5±1.5 78.5±2.1
50 2 75.4±1.2 77.5±2.2 74.3±2.5 79.6±2.7 77.0±2.2 80.0±2.6

3 78.3±1.1 77.0±1.2 77.8±0.7 81.3±1.8 78.0±1.0 80.8±1.1
All 79.0±2.0 78.0±1.6 77.2±1.0 81.5±1.9 81.5±1.7 82.1±1.7
1 72.7 ±2.8 73.5±1.9 65.6±1.6 71.8±0.7 75.5±1.1 67.8±1.5

500 2 78.5±1.9 78.5±2.9 70.5±1.2 79.5±1.9 82.5±1.8 74.0±2.6
3 80.5±1.4 79.5±2.6 73.8±0.3 83.0±1.2 82.0±1.4 77.1±2.36

All 79.0±1.4 80.5±1.8 71.6±1.5 82.5±2.3 83.0±1.1 76.0±1.0

Table 1. Genre classification results on GTZAN dataset (mean accuracy and standard deviation over 4 splits)

were then calculated on the test data. This was repeated for
each of the 4 data splits and results are reported over these 4
splits. We then picked the model that performs best on the
GTZAN dataset and applied it to a genre classification task
on the ISMIR 2004 dataset.

3.1. Training

We followed a pipeline very similar to the one described in
[10]. We calculate FFTs on frames of length 1024 at 22050
kHz sampling rate with an overlap of 50% and use the abso-
lute value of each FFT frame. The output from each frame is
a 513 dimensional vector. Each feature dimension was then
normalized to have zero mean and unit standard deviation.
Both the rectifier and sigmoid networks had the same archi-
tecture so that the features could be compared. We tried a
large number of permutations of the number of hidden units,
and we quote results on the two architectures that performed
best. In the first architecture each hidden layer has 50 units
and in the second, each has 500 units.

When training the rectifier networks with SGD, the out-
put layers consisted of softmax units. The learning rate was
tuned by a grid search and no update schedules were used.
We found that a learning rate of 0.01 worked best when using
ReLUs. The validation set was used to perform early stopping
with a patience of 10. For the experiments with Dropout, we
applied the same rate to all the hidden layers. We found the
optimum dropout rate to be 0.25 for all the hidden layers. We
also experimented with applying dropout to the input layer
and found that we got better results when it wasn’t applied
to the input layer. We did not apply Dropout to the sigmoid
networks because there are no accepted modifications of HF
that incorporate Dropout [7].

For the experiments with Hessian Free optimisation, the
output layer consisted of sigmoid units. We experimented
with softmax and sigmoid output layers and found that both
produced comparable results. We used the entire training data
for the gradient calculation and 25% of the training data for
calculation of the Gauss-Newton matrix. Increasing the num-
ber of examples provided to the curvature matrix calculation
beyond this did not improve accuracies any further. An initial
damping factor of 10 gave the best results on the test dataset.
The Conjugate Gradient (CG) step of the algorithm was lim-
ited to a maximum of 250 iterations and the number of steps

of HF was limited to 200. Apart from this, we follow all of
the details of Martens’ approach [19].

We used the Theano [3] python library for training the
networks on a GPU.

3.2. Classification

Our aim is to use neural networks to discover features that
can be used for MIR tasks. We used the activations of the
hidden layers of the neural networks as features and trained a
Random Forest classifier on top of these features to predict the
label. Training a separate classifier on the activations is useful
since it allows direct comparison with other features. There
is also some evidence [23] that suggests that training a more
powerful classifier, as compared to logistic regression, on the
top layer of a neural net provides better results. However un-
like that paper, the classifier was not trained jointly with the
rest of the network. For the ReLU networks, training a sep-
arate classifier on the activations is potentially more benefi-
cial because of the hard sparsity present in the hidden layers.
We used a Random Forest classifier because the amount of
training data is quite large (645,000 training examples) and
Random Forest classifiers scale well to large datasets. The
classifier was used to predict a label for each frame of a test
example, and maximum voting was used to predict the genre
for the example. We compare the results of training the clas-
sifier on the activations of each hidden layer and on all the
hidden layer activations combined.

3.3. Aggregated Features

Several authors have shown significant improvements in clas-
sification accuracy by aggregating features over time [4, 10,
5, 24]. In our experiments we found that classification accu-
racy does not vary much over a range of aggregation times
between 3 to 6 seconds. We aggregated the features over 5
seconds with an overlap of 2.5 seconds. Each aggregated fea-
ture vector was the mean and variance of the features that lie
in that 5 second window.

3.4. Genre Classification on ISMIR 2004 Dataset

To evaluate the effectiveness of the features learnt in the pre-
vious section, we applied the same features to a genre clas-
sification task on the ISMIR 2004 dataset. The motivation
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Hidden Units Layer ReLU+SGD ReLU+SGD+Dropout Sigmoid + HF
1 70.50 68.03 68.72

50 2 70.80 66.94 70.23
3 69.13 68.03 70.50

All 72.42 69.68 71.20
1 68.03 70.09 68.40

500 2 71.33 72.01 68.32
3 71.46 69.41 70.37

All 72.30 73.46 70.23

Table 2. Genre classification results on the ISMIR 2004
dataset

behind doing this is to test whether the features are robust
to changes in the input distribution and if they capture infor-
mation that can be used for tasks other than what they were
trained for. We aggregated the features over 5 seconds with a
2.5 second overlap and applied them to a genre classification
task. We picked the two models that performed best on the
GTZAN dataset to extract features from the ISMIR data. The
same procedure of classifying aggregated frames, followed by
maximum voting was used to classify the test examples. To
compare the learnt features with some baseline hand-crafted
features, we also repeated the above experiment with MFCC
features and Principal Mel-Spectrum Components (PMSC)
features [11]. Previous work [10] applies the features learnt
from sigmoid nets to an auto-tagging task, however we could
not perform the same experiment due to unavailability of the
data.

3.5. Results and discussion

Table 1 shows the results of genre classification on the
GTZAN dataset. We note that the best accuracy is achieved
by the rectifier net with dropout and a large number of hidden
units. The system classifies the GTZAN data with an accu-
racy of 83± 1.1%. These results cannot be directly compared
to the results in [10], because we average results over 4 splits
of the dataset. However it can be seen that results are in a
similar range. We also compare our results with the results
of other methods applied to the GTZAN dataset presented
in [12]. MFCC features provide an accuracy of 77% while
a large number of hand-crafted features provide an accuracy
of 83%. We note that our method compares favourably to
the current state of the art results on the GTZAN dataset.
The major improvement over the system in [10], is that the
network is trained from randomly initialized weights without
any pre-training. The number of training epochs that SGD
takes to converge is also less than with sigmoid nets. Since
we use early stopping, the number of epochs varies with each
trial. But on average, the system can converge to good solu-
tions in 200 training epochs (for 50 hidden units per layer)
in a training time of about 14 hours (for 200 epochs). Since
SGD for rectifier nets converge faster, we were able to train
networks with more hidden units which provided better re-
sults. We note that Dropout helps improve results when the
number of hidden units is large. For the smaller network, the
results with Dropout are worse.

From table 1, the network with 50 hidden units trained
with HF gives results comparable to the network trained with
SGD in [10] and better results than the rectifier network
trained with the same number of units. However the sigmoid
network with 500 units performs much worse, although train-
ing and validation errors were lower. This implies that the
larger network overfits the training data. HF, as an optimiza-
tion algorithm doesn’t specifically deal with the problem of
overfitting. Overfitting can be reduced with the usual regu-
larisation techniques, which we tried to keep to a minimum
to be able to compare the features learnt by the two kinds of
networks (except when using Dropout). However we obtain
significant improvements in training time and in reduction of
hyper-parameters that need to be tuned. With the number of
iterations fixed to the values described earlier, HF takes 12
hours (averaged over 4 trials) to train the network with 50
hidden units. This is a big improvement in time as compared
to [10]. Another advantage of using HF is that these large
networks were trained without any layer-wise unsupervised
pre-training.

Table 2 shows the results on the genre classification task
on the ISMIR dataset. We note that the rectifier network
with 500 hidden units and Dropout provides the best clas-
sification accuracy of 73.46%. We performed tests on the
train/development split provided for the Audio Description
Contest [1]. We repeated the classification experiment with
MFCC and PMSC features for comparison. The classifica-
tion accuracy with MFCCs was 67.21% and with PMSCs was
68.45%. In [21], the authors use several hand-crafted features
as input to the same classification task. Although the results
can’t be directly compared, our results are of the same order
if not better than the results achieved by using several hand-
crafted features.The above results validate the claim that the
learnt features capture information from the audio data that
can be used for other tasks.

4. CONCLUSIONS AND FUTURE WORK

In this paper we describe better ways to learn robust features
for MIR tasks using Deep Neural Networks. We show that
training time can be reduced significantly by using ReLUs
and HF. Both the rectifier and sigmoid networks are trained
from randomly initialized weights without any pre-training.
Once the features are learnt, the feature extraction does not
take very long, which makes this approach practical for large
datasets. In the future, we would like to apply features learnt
from neural nets to improve performance of tasks like artist
identification and music transcription. We would also like
to explore transfer learning and unsupervised learning algo-
rithms to try to leverage unlabelled data to learn useful fea-
tures for MIR tasks.
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