
LOSSLESS AUDIO COMPRESSION IN THE NEW IEEE STANDARD FOR ADVANCED
AUDIO CODING

H. Huang, H. Shu, and R. Yu

Institute for Infocomm Research,
Agency for Science, Technology and Research (A*STAR), Singapore

ABSTRACT

The IEEE Standard for Advanced Audio Coding (IEEE
1857.2) is a new standard approved by IEEE in August 2013.
The standard comprises both lossy and lossless audio com-
pression tools. This paper presents the lossless audio com-
pression tool, which utilizes a pre-processing procedure for
flattening the amplitude envelop of linear prediction residue,
and an arithmetic coder that adopts a scaled probability tem-
plate. The performance of the new IEEE lossless compressor
is evaluated and compared with state-of-the-art lossless audio
coders. Evaluation results show that the lossless compression
performance of the IEEE compressor is about 5% higher than
MPEG-4 ALS and 12% higher than FLAC.

Index Terms— Lossless audio compression, IEEE 1857.2,
linear prediction, arithmetic coding

1. INTRODUCTION

During the last decade, the Internet has undergone growth at
an exponential pace. Coupled with advancement of semicon-
ductor technology and digital signal processing algorithm,
online multimedia contents are now pervasive, and there is
no sign of slowing down in the speed of new contents being
added. A significant portion of those multimedia contents are
audio, which are commonly pre-compressed before being put
online. Generally, there are two types of audio compression
methods: the lossy and the lossless. The former attempts
to remove perceptually less important information from the
audio data while keeping the sound quality very close, and
sometime indistinguishable, to the original audio. Exam-
ples of such lossy audio compression algorithms include the
MPEG-1 Layer-3 (MP3) and the MPEG-2/4 Advanced Audio
Coding (AAC), which can generally achieve compression of
audio by more than twenty times, while still delivering good
sound quality. The other type of compression algorithms is
the lossless, which essentially keeps every bit of information
in the original audio data. It is known that state-of-the-art
lossless audio compression algorithms can achieve about two
times compression.

Lossy audio compression is mainly for general music con-
sumptions, such as playing music from iPods, or listening

to networked radio using mobile phones. In contrast, loss-
less audio compression is mainly used in high fidelity audio
reproduction, archival of audio database, and more recently
biomedical signal compression, such as lossless ECG com-
pression [1]. In applications like lossless audio archival, the
data are generally intended to be preserved for a long period
of time, and therefore it is crucial that they can be correctly
de-compressed without any loss in the future. Like the lossy
counterparts, there are international standards for lossless au-
dio compression and the most recent effort was published
as ISO/IEC standards in 2006, namely the MPEG-4 Audio
Lossless Coding (ALS) [2], and Scalable Lossless Coding
(SLS) [3], respectively. In addition, there were also other
open-source lossless audio compression algorithms such as
the FLAC [4], which is also popular on the Internet.

In lossless audio compression, a generally adopted ap-
proach is to use a combination of linear prediction and en-
tropy coding. A linear predictor first removes redundancy in
the input data and generates a prediction residue, which is
subsequently encoded by an entropy coder. Linear Predic-
tive Coding (LPC) and Huffman/Golomb-Rice codes are the
most commonly used tools for prediction and entropy cod-
ing, for example in [1][2][4]. In this paper, a new variation
of the compression algorithm is introduced. Essentially, it
utilizes an LPC predictor, a novel pre-processor for flatten-
ing the prediction residue, and a new entropy coder that is
based on arithmetic coding with probability template scaling.
The algorithm has been incorporated into the IEEE Standard
for Advanced Audio Coding (IEEE 1857.2) [5] as part of the
lossless audio compression tool. Evaluation results show that
the compression performance of IEEE 1857.2 is better than
MPEG-4 ALS, MPEG-4 SLS and FLAC.

2. IEEE 1857.2 LOSSLESS AUDIO COMPRESSION

The block diagram of the IEEE 1857.2 lossless audio com-
pression system is shown in Fig.1, in which the top part
illustrates the encoder, and the bottom part the decoder. In
encoding, input audio samples are first processed by a predic-
tor, which removes correlations in the input audio samples,
and generates a prediction residue. The prediction residue
then goes through a pre-processing step where the signal’s

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6984

dynamic range is reduced, or in other words, the amplitude
envelop of the signal is flattened. The flattened prediction
residue is subsequently coded by an entropy coder into a
lossless bitstream. In decoding, a reverse process is per-
formed in which the lossless bitstream is entropy-decoded,
post-processed (de-flattened), and losslessly-reconstructed to
a decoded signal that is an exact replication of the original
input audio.

Predictor Pre-
processor

Entropy
Encoder

Re-
constructor

Post-
processor

Entropy
Decoder

Input
audio

Decoded
audio

Lossless
bitstream

Fig. 1. IEEE 1857.2 lossless audio compression: encoding
(top) and decoding (bottom)

2.1. Prediction and Reconstruction

The block diagram of the predictor is shown in Fig.2. In-
put audio samples are first segmented into frames of fixed
length. Linear predictive coding (LPC) is then performed on
each frame, with partial-correlation (PARCOR) coefficients
computed through the Levinson-Durbin algorithm [6]. The
PARCOR coefficients are quantized and sent as ancillary in-
formation in the lossless bitstream. The quantized PARCOR
coefficients are also locally dequantized and converted to the
tap coefficients of a linear predictor, which generates a pre-
diction for each sample in the frame. The difference signal
between an input sample and its prediction – the prediction
residue – is output to the next processing stage.

Framing

PARCOR

Q

Q-1
PARCOR
 to coef

Linear
predictor

Audio
samples

Prediction
residues

to bitstreamQuant. PARCOR

coef

Fig. 2. Linear prediction

In reconstruction, the quantized PARCOR coefficients are
extracted from the bitstream, dequantized, and converted to
linear predictor coefficients, which are identical to those used
in the encoder. The linear predictor generates a prediction,
which is added to the decoded prediction residue to recon-
struct the original input sample. The block diagram of the
reconstructor is shown in Fig.3.

Linear
predictor

Q-1
PARCOR
 to coef

coef

Losslessly
reconstructed
audio

Quant.
PARCOR

Prediction
residues

Fig. 3. Lossless reconstruction

2.2. Pre- and Post-processing

In IEEE 1857.2 lossless audio compression, it is designed that
each audio frame can be decoded independently without using
information from other frames. There are two benefits of this:
firstly, compressed audio files can be decoded at a granularity
of one frame interval, and secondly, bit errors occurred during
transmission do not propagate beyond frame boundaries. As
such, intra-frame linear prediction is performed on each audio
frame as follows:

y(0) = x(0), (1)

y(i) =

i∑
j=1

a
(i)
j x(i− j), 1 ≤ i ≤ p− 1, (2)

y(i) =

p∑
j=1

a
(p)
j x(i− j), i ≥ p, (3)

where i is the time index to the samples in a frame, x(i) and
y(i) denote input samples and their predictions in the frame,
the maximal predictor order is p, and the coefficient at each
predictor tap is denoted as aj , j = 1, . . . , p, the superscript in
a
(i)
j indicates that the coefficients are computed for predictor

of order i. Since linear prediction is performed intra-frame,
for samples at the beginning of each frame, the orders of the
predictor used are very short, which result in larger predic-
tion residues compared to the rest of the frame. An example
of such effect is shown in Fig.4, where a segment of audio
waveform is shown in the top panel, and the resulted predic-
tion residue signal shown in the centre panel.

The large residues at the beginning of each audio frame
are problematic, as they increase the dynamic range of the
prediction residue considerably, which will force the follow-
ing entropy coder to adopt a large alphabet size in arithmetic-
coding, hence significantly increasing the computational
complexity of entropy coding. In IEEE 1857.2, this prob-
lem is solved by pre-processing the prediction residues as
depicted in Fig.5, where the residues are down-shifted by a
number of bits to reduce their amplitudes. In this way, the
amplitude envelop of the prediction residue is flattened, en-
suring a smaller dynamic range of the signal, which can then
be coded by the entropy coder using a smaller alphabet size.
In the example in Fig.4, the flattened prediction residue is

6985

50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

Sample

Am
plit

ude
·10

4

(a) Input waveform

5 10 15 20 25 30
0

2000

4000

6000

8000

10000

Sample

Am
plit

ude

b

b

b
b

b
b

b b b b b b b b b b
b

b b
b

b

b
b b

b
b b b b

b

b

(b) Prediction residue

5 10 15 20 25 30
0

2000

4000

6000

8000

10000

Sample

Am
plit

ude

b

b b b
b

b
b

b b b b b b b b b b
b

b b
b

b

b
b b

b
b b b b

b

b

(c) Flattened residue after pre-processing

Fig. 4. Example of intra-frame prediction

shown in the bottom panel.

Down-shift
operation

Compute
number of

shifts

LSB data to bitstream

Flattened
residues

Quant.
PARCOR

Prediction
residues

Number of shifts

Fig. 5. Pre-processing prediction residue

In pre-processing prediction residues, the number of
down-shifts for each residue is computed from the quan-
tized PARCOR coefficients. In the Levison-Durbin recursive
procedure [6], there is the following relationship:

Ei = (1− k2i)Ei−1, (4)

where ki, i = 1, 2, . . . , p denotes the PARCOR coefficients,
Ei−1 and Ei are the energy of the (i − 1)-th and i-th predic-
tion residue, respectively. From Equation (4), the following
relationship can be obtained:

Ei

Ep
=

p∏
j=i+1

1

1− k2j
, i = 0, 1, . . . , p− 1, (5)

where Ep is the energy of the p-th prediction residue. In
practice, only the first p residues in each frame need to be
pre-processed, in which the number of down-shifts applied to

each residue is derived from Equation (5) as p∑
j=i+1

log2

1

1− k2j
+ 0.5

 , i = 0, 1, . . . , p− 1, (6)

where b c is the floor operator. In Equation (6), The logarithm
terms inside the summation can be pre-computed and stored
in look-up tables for fast computation.

Up-shift
operation

Compute
number of

shifts

Number of shifts

LSB data

Flattened
residues

Quant.
PARCOR

Prediction
residues

Fig. 6. Post-processing prediction residue

In decoding, a reverse bit-shifting operation is done at the
post-processing step, as depicted in Fig.6.

2.3. Entropy Coding

The entropy coder is based on arithmetic coding. The block
diagram of the entropy encoder is shown in Fig.7.

Arithmetic
encoder

Prob.
template

Lossless
bitstream

index

Mean

prob. table

Scaling

Q-1Q

Flattened residues

Fig. 7. Entropy encoder

For each frame of flattened prediction residue, the mean
value of the frame, µ, is computed as

µ =

∑N
i=1 |e(i)|
N

, (7)

whereN is the length of the frame, and e(i), i = 0, 1, . . . , N−
1, are the flattened residues in the frame. For the purpose of
coding, the value µ is logarithmically quantized to an integer,
index, as

index = blog2 µ+ 0.5c , (8)

which is then locally dequantized to

µ̄ = 2index, (9)

6986

where µ̄ is the dequanitzed mean of the frame, which is used
to scale a probability template to generate a probability table
for arithmetic coding as follows:

p(s) = f(bs/µ̄+ 0.5c), (10)

where s denotes symbols in the probability distributions, f(s)
is the probability template, and p(s) is the probability table to
be used by the arithmetic encoder.

The probability template is a table containing a set of
probability density values, which are trained from a large
amount of audio data. Fig.8 shows the probability template
(solid line) adopted in IEEE 1857.2, which approximates a
Gaussian function (mean -0.1, standard deviation 0.6, dot-
ted line). It is found that using the trained table generally
achieves a lossless compression performance 1% better than
using the Gaussian function.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

symbol s

p
ro
b
a
b
il
it
y
d
en

si
ty

f(
s)

IEEE Std 1857.2-2013
Gaussian pdf (-0.1,0.6)

Fig. 8. Probability template for arithmetic coding

In IEEE 1857.2, the arithmetic coder is implemented us-
ing the fast algorithm in [7]. During the encoding of each
frame, the parameter index is first differentially coded, and
then arithmetically coded. Following that, prediction residues
in a frame are coded by the arithmetic encoder using the
scaled probability table in (10). The block diagram of the
corresponding entropy decoder is given in Fig.9.

Arithmetic
decoder

Scaling Q-1

 Prob.
template

prob. table
index

Lossless
bitstream

Flattened residues

Fig. 9. Entropy decoder

3. PERFORMANCE EVALUATION

The performance of the IEEE lossless audio compressor
was benchmarked against other standardized lossless au-

dio coders, including the MPEG-4 ALS, MEPG-4 SLS, and
FLAC. In performance benchmarking, the input source used
is a 450-second long wav file with 48 kHz sampling rate and
16 bits sampling resolution. The wav file is a concatenation
of 15 different, 30-second long audio clips, which are ripped
from music CDs of different genres. The performance in-
dicators used are compression rate, and encoding/decoding
speed. Compression rate is computed by dividing the file
size before compression by that after compression. The more
the audio file is compressed, the higher is the compression
rate. The encoding/decoding speeds are measured in terms
of how fast the encoder/decoder processes relative to playing
the audio clip in real-time. For example, if an audio clip is
30-second long, and it takes 2 seconds to compress it, then
the compressor is said to run at 30s/2s = 15 × realtime.
The performance evaluation was tested on a laptop computer
with a 1.6 GHz Intel Core i5 processor and 4GB 1333 MHz
RAM. The evaluation results are shown in the table below.

Table 1. Performance comparison of lossless audio coders
Lossless Compress. Encoding Decoding
Audio Rate Speed Speed
Coders ×realtime ×realtime
IEEE 1857.2 2.18 21.7 38.4
MPEG-4 ALS 2.09 51.1 126.5
MPEG-4 SLS 2.04 8.3 8.4
FLAC 1.94 228.6 392.8

As can be seen from the table, the IEEE coder shows
the highest compression rate, which is about 5% higher than
MPEG-4 ALS, and 12% higher than FLAC. In terms of en-
coding/decoding speeds, FLAC is the fastest, followed by
MPEG-4 ALS, IEEE 1857.2, and MPEG-4 SLS. This is as
expected because the computational complexity of arithmetic
coding in IEEE 1857.2 and SLS is higher than that of Huff-
man/Rice coding used in FLAC and ALS. Nevertheless, on a
general-purpose laptop PC used in the benchmarking test, the
IEEE compressor provides a decent encoding/decoding speed
of about 20/40 ×realtime, which is more than sufficient for
most applications.

4. CONCLUSION

This paper presents the lossless audio compression tool in the
recently approved IEEE Standard for Advanced Audio Cod-
ing (IEEE 1857.2). Performance evaluation results show that
the lossless compression performance of the proposed method
is higher than MPEG-4 ALS, SLS, and FLAC. The encod-
ing/decoding speeds of the IEEE compressor are about 20/40
times realtime on a general purpose laptop PC.

6987

5. REFERENCES

[1] S-L Chen, G-A Luo, and T-L Lin, “Efficient fuzzy-
controlled and hybrid entropy coding strategy lossless ecg
encoder vlsi design for wireless body sensor networks,”
Electronics Letters, vol. 49, no. 17, pp. 1058–1060, 2013.

[2] ISO/IEC 14496-3:2005/Amd 2:2006, “Audio Lossless
Coding (ALS), new audio profiles and BSAC extensions,”
2006.

[3] ISO/IEC 14496-3:2005/Amd 3:2006, “Scalable Lossless
Coding (SLS),” 2006.

[4] “FLAC - Free Lossless Audio Codec,” http://xiph.
org/flac/, Oct. 2013.

[5] IEEE 1857.2-2013, “IEEE Approved Draft Standard for
Advanced Audio Coding,” Aug. 2013.

[6] John Makhoul, “Linear prediction: A tutorial review,”
Proceedings of the IEEE, vol. 63, no. 4, pp. 561–580,
1975.

[7] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic
coding revisited,” ACM Transactions on Information Sys-
tems, vol. 16, no. 3, pp. 256–294, July 1998.

6988

