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ABSTRACT
In packet networks, a reliable scheme to handle packet loss
during speech transmission is of great importance. As a
common representation of the linear predictive coding (LPC)
model, the line spectral frequency (LSF) parameters are
widely used in speech quantization and transmission. In this
paper, we propose a novel scheme to estimate the missing
values occurring during LPC model transmission. In order
to exploit the boundary and ordering properties of the LSF
parameters, we utilize the ∆LSF representation and apply the
Dirichlet mixture model (DMM) to capture the correlations
among the elements in the ∆LSF vector. With the conditional
distribution of the missing part given the received part, an op-
timal nonlinear minimum mean square error estimator for
the missing values is proposed. Compared to the previously
presented Gaussian mixture model based method, the pro-
posed DMM based nonlinear estimator shows a convincing
improvement.

Index Terms— Line spectral frequency, packet loss,
Dirichlet distribution, mixture modeling, neutrality property

1. INTRODUCTION

Efficient quantization and transmission of the linear predic-
tive coding (LPC) model plays an important role in paramet-
ric speech coding. Conventionally, the LPC coefficients are
converted to line spectral frequency (LSF) parameters [1–3].
The LSF representation, among others, is the most stable and
efficient one in LPC model quantization and transmission [4].

When transmitting speech over a packet network, the de-
layed or lost packets should be estimated from the available
information so that additional latency is avoided. In a previ-
ous study [5], the joint distribution of the missing LSF ele-
ments and the receiving ones is modeled by a Gaussian mix-
ture model. Based on the conditional distribution of the miss-
ing part given the received one, an optimal minimum mean
square error (MMSE) estimator was derived by utilizing the
intra-frame correlation of differentially-encoded LSF coeffi-
cients. Due to the nice properties of the Gaussian distribution,

a closed-form solution was obtained. This method enhanced
the quality of the speech when frame losses occurred and con-
sumed significantly less memory, compared to a histogram-
based approach.

By considering the boundedness [6] and ordering proper-
ties [7, 8], the LSF parameters can be transformed into the
∆LSF domain. The ∆LSF parameters have less variabil-
ity and the range is more limited compared to the absolute
LSF value [4, 9]; therefore, schemes of quantizing the ∆LSF,
rather than the LSF, have been introduced in, e.g., [7–11].
In [8], the underlying distribution of the ∆LSF parameters
was modeled by a Dirichlet mixture model (DMM). An effi-
cient DMM-based vector quantization (VQ) scheme was pro-
posed and shown to be superior to the conventional Gaussian
mixture model (GMM)-based VQ. Hence, the ∆LSF param-
eters, instead of the LSF parameters, were transmitted after
quantization.

In this paper, we propose a DMM-based method to non-
linearly estimate the ∆LSF values lost during transmission.
Similar to [8], the underlying distribution of the ∆LSF is
modeled by a DMM. With the neutrality properties of the
Dirichlet variable, the correlation between the received part
and the missing part is studied and an optimal nonlinear es-
timator for the missing ∆LSF values is derived. This es-
timator can be expressed in an analytically tractable form,
and therefore, the calculation is facilitated. Previous work
on Dirichlet/generalized Dirichlet distribution based estima-
tor mainly focused on image processing, which can be found
in, e.g., [12].

In the remaining parts of this paper, we will introduce the
basic idea of the ∆LSF parameters, study the neural proper-
ties of the Dirichlet variable, derive the DMM-based nonlin-
ear estimator, and show extensive experimental comparisons.

2. ∆LSF REPRESENTATIONS OF THE LSF
PARAMETERS

The LSF parameters are widely used in speech transmission
because of their relatively uniform spectral sensitivity [13].
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The LSF parameters with dimensionality K are defined as

s = [s1, s2, . . . , sK ]T, (1)

which are interleaved on the unit circle [1].
By recognizing that the LSF parameters are in the interval

(0, π) and are strictly ordered, one representation, namely the
∆LSF, was utilized in [7] for the purpose of LSF quantiza-
tion [8]. It has been demonstrated that the DMM based VQ
performs better than the conventional GMM based VQ [8].
With a transformation matrixA, the relation between the LSF
parameters s and the ∆LSF parameters x is [7]

x = ϕ(s) = As = [s1, s2 − s1, . . . , sK − sK−1]T, (2)

where

A =
1

π


1 0 · · · · · · · · · 0
−1 1 0 · · · · · · 0
0 −1 1 0 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · · · · 0 −1 1


K×K

. (3)

According to [7, 8], the underlying distribution of the K-
dimensional ∆LSF parameters can be modeled efficiently
with a (K + 1)-dimensional DMM.

3. DIRICHLET MIXTURE MODEL

By concatenating xK+1 = 1 −
∑K
k=1 xk to the end of

x, we obtain a new (K + 1)-dimensional vector x̃ =
[x1, . . . , xK , xK+1]T, which is named the complete ∆LSF
vector. From another point of view, this vector can be
obtained by dividing the range [0, π] into K + 1 intervals
s1−0, . . . , sK−sK−1, π−sk, and then scaled by a factor 1

π .
Thus, the vector x̃ denotes the proportions of these K + 1 in-
tervals to the whole range [0, π]. Since the summation of the
elements in x̃ is equal to one, we assume that x̃ is Dirichlet
distributed, with K degrees of freedom, as [14]

f(x̃) = Dir(x̃;α) =
Γ(
∑K+1
k=1 αk)∏K+1

k=1 Γ(αk)

K+1∏
k=1

x
αk−1
k ,

where α = [α1, α2, . . . , αK+1]T is the parameter vector.
With a set of N i.i.d. observations X = [x̃1, . . . , x̃N ], we
can denote the likelihood function for the observations by a
mixture of Dirichlet densities with I components as

f(X) =

N∏
n=1

I∑
i=1

πi
Γ(
∑K+1
k=1 αki)∏K+1

k=1 Γ(αki)

K+1∏
k=1

(xkn)αki−1,

where αi = [α1i, α2i, . . . , αK+1,i]
T is the parameter vector

for the ith mixture component, πi is the nonnegative weight-
ing factor for the ith component, and

∑I
i=1 πi = 1. By ap-

plying the expectation-maximization (EM) algorithm, the pa-
rameters in the DMM can be estimated with the method in-
troduced in [7]1.

1Bouguila et al. also proposed an EM algorithm in [15]. In this paper, we
directly estimate αki instead of estimating lnαki as in [15].

4. ESTIMATION OF THE MISSING VALUES

The Dirichlet vector x̃ is negatively correlated. When some
elements in x̃ are missing, we can recover them by using the
correlations between the missing part and the received part.

4.1. Properties of the Dirichlet Variable

The Dirichlet vector x̃ is a neutral vector [8, 16]. This neu-
trality concept has been proposed in [16] and the indepen-
dence properties of the proportion ratios were further studied
in [17–19]. Here, we review two important properties of the
neutral vector.

Property 4.1 (Aggregation of Dirichlet Variable)
If a vector x̃ = [x1, x2, . . . , xK+1]T is Dirichlet dis-

tributed as Dir(x̃;α), the new vector x̃i∩j = [x1, x2, . . . , xi+
xj , . . . , xK+1]T is also Dirichlet distributed as Dir(x̃i∩j ;αi∩j),
where αi∩j = [α1, α2, . . . , αi + αj , . . . , αK+1]T.

Property 4.2 (Neutrality Property)
For x̃ = [x1, x2, . . . , xK+1]T drawn from Dir(x̃;α), x1

is independent of x\1 = [ x2

1−x1
, . . . , xK+1

1−x1
]T. More gener-

ally, for any k ∈ {1, 2, . . . ,K + 1}, xk is independent of
x\k = [ x1

1−xk
, . . . , xk−1

1−xk
, xk+1

1−xk
, . . . , xK+1

1−xk
]T. Furthermore,

x̃\k is distributed as x̃\k ∼ Dir(x̃\k;α\k), where α\k =
[α1, . . . , αk−1, αk+1, . . . , αK+1]T.

4.2. Relating Distributions

Assuming that the complete ∆LSF parameter vector x̃ is par-
titioned into two parts, i.e., the missing part x̃M and the re-
ceived part x̃R, as

x̃ =

[
x̃M

x̃R

]
. (4)

Meanwhile, the parameter vector in the ith mixture compo-
nent can also be partitioned correspondingly as

αi =

[
αM
i

αR
i

]
. (5)

After normalizing the missing parts by itself, we get a nor-
malized vector

x̆M = [x̆M
1 , x̆

M
2 , . . . , x̆

M
M ]T. (6)

Each element in x̆M is defined as

x̆M
m =

xM
m∑M

m=1 x
M
m

=
xM
m

1−
∑R
r=1 x

R
r

, (7)

where xM
m is the mth element in x̃M and M is the length of

x̃M. According to property 4.1 and 4.2, it can be shown that
the distribution of the normalized missing part x̆M, on a mix-
ture component basis, can be written as

fi(x̆
M) = Dir(x̆M;αM

i ) =
Γ(
∑M
m=1 α

M
mi)∏M

m=1 Γ(αM
mi)

M∏
m=1

(x̆M
m)

αM
mi−1

. (8)
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For the same reasoning, the normalized version of the re-
ceived parts x̆R can be represented as

x̆R = [x̆R
1 , x̆

R
2 , . . . , x̆

R
R]T and x̆R

r =
xR
r∑R

r=1 x
R
r

, (9)

where xR
r denotes the element in x̃R and R is the length of

x̃R. The marginal PDF of x̆R, on a mixture component basis,
is then denoted as

fi(x̆
R) = Dir(x̆R;αR

i ) = πi
Γ(
∑R
r=1 α

R
ri)∏R

r=1 Γ(αR
ri)

R∏
r=1

(x̆R
r )
αR
ri−1

. (10)

4.3. Optimal MMSE Estimator

Based on the probability theory [20,21], the optimal estimator
for the missing part x̆M, in terms of the MMSE criterion, is the
conditional mean of the missing part x̃M given the received
part x̃R, which can be calculated as

Ef(x̃M|x̃R)

[
x̃M] =

∫
x̃Mf(x̃M|x̃R)dx̃M. (11)

The conditional PDF of x̃M given x̃R is

f(x̃M|x̃R) =
f(x̃)

f(x̃R)

=

∑I
i=1 πifi(x̃)∫ ∑I
i=1 πifi(x̃)dx̃M

=

I∑
i=1

[
πifi(x̃

R)∑I
i=1 πifi(x̃

R)
·
fi(x̃)

fi(x̃R)

]

=
I∑
i=1

[
πifi(x̃

R)∑I
i=1 πifi(x̃

R)
· fi(x̃M|x̃R)

]
.

(12)

In the last line of (12),

πifi(x̃
R)∑I

i=1 πifi(x̃
R)

=
πifi(x̆

R)∑I
i=1 πifi(x̆

R)
, (13)

since fi(x̃R) ∝ fi(x̆
R). This quantity can be calculated ex-

plicitly with (10) and is independent of x̃M. Therefore, the
conditional mean of x̃M given x̃R can be calculated as

Ef(x̃M|x̃R)

[
x̃M]

=
I∑
i=1

π′i

∫
x̃Mfi(x̃

M|x̃R)dx̃M (14)

= (1−
R∑
r=1

xR
r ) ·

I∑
i=1

π′i

∫
x̆Mfi(x̆

M)dx̆M (15)

= (1−
R∑
r=1

xR
r ) ·

I∑
i=1

π′i ·Efi(x̆M)

[
x̆M] ,

where π′i = πifi(x̃
R)∑I

i=1 πifi(x̃R)
. From (14) to (15) we used the

fact that x̃M = (1−
∑R
r=1 x

R
r )x̆M and applied the method of

integration by substitution.
The above equation means that the optimal estimator of

the missing part x̃M, in terms of MMSE sense, is the weighted
sum of the means of the normalized missing part x̆M scaled
by the received part x̃R.

5. EXPERIMENTAL RESULTS AND DISCUSSION

5.1. Experimental Setup

The DMM based VQ for the ∆LSF representation was intro-
duced in [8]. In stead of transmitting the K-dimensional LSF
vector directly, the K-dimensional ∆LSF vector was quan-
tized and transmitted. At the receiver side, the LSF vector
can be obtained from the received ∆LSF vector. In case that
some elements are lost during transmission, we can use the
above proposed DMM based nonlinear optimal MMSE esti-
mator to recover the missing part from the received elements.
In order to make extensive comparisons, we test the proposed
estimator with both narrow band (NB) and wide band (WB)
data. For each type of data, we consider two transmission
scenarios: a) the elements in the ∆LSF vector are transmitted
individually and only one element is lost during transmission.
b) the ∆LSF vector are partitioned into subsets and then trans-
mitted. Only one subvector is lost during transmission. The
partition strategy follows the commonly used method in the
LSF transmission as:

1. The NB data case. According to the GSM AMR
coder [5, 22], the 10-dimensional LSF/∆LSF vector
are partitioned into three subsets as {3, 3, 4}.

2. The WB data case. When applying the split VQ [23,
24], the 16-dimensional LSF/∆LSF vector are usually
partitioned into five subsets as {3, 3, 3, 3, 4}.

Please note, when recovering the missing elements from
the complete (K + 1)-dimensional ∆LSF vector, we need to
estimate not only the missing elements but also the redun-
dant element (i.e., xK+1) in the complete ∆LSF vector. This
means that, if the elements with location index 1, 2, and 3 are
missing in the NB data case, the missing part (that will be
estimated) in (4) is x̃M = [x1, x2, x3, x11]T.

5.2. Results and Discussion

To make fair and extensive comparisons, we conducted and
compared three estimation methods:

1. The proposed DMM+∆LSF method, which models the
∆LSF parameters by a DMM.

2. The GMM+LSF method introduced in [5], which mod-
els the LSF parameters by a GMM.

3. The GMM+∆LSF method, which models the ∆LSF
parameters by a GMM and follows the optimal estima-
tion strategy in [5].

For method 1 and 3, the corresponding LSF parameters can
be obtained from the estimated ∆LSF parameters. The esti-
mation error in the LSF domain, calculated in terms of mean
square error (MSE), is used as the criterion for performance
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Table 1. Performance comparisons with NB data.

Method
Model MSE (×10−3)

Missing element Missing subvector

order 1 2 3 4 5 6 7 8 9 10
Avg.

1 2 3
Avg.

DMM+∆LSF
16 mix. 3.5 3.8 4.7 6.9 8.5 7.6 7.8 6.5 8.4 8.3 6.6 18.8 51.5 61.5 43.9
32 mix. 3.2 3.5 4.6 6.5 8.2 7.1 7.4 6.2 8.2 8.2 6.3 18.3 49.1 60.7 42.7
64 mix. 3.1 3.3 4.2 6.2 8.1 6.5 7.2 6.0 8.1 8.1 6.2 17.8 48.9 60.2 42.3

GMM+LSF
16 mix. 3.6 4.4 6.5 13.9 17.8 14.9 14.7 13.9 12.2 10.4 11.2 23.8 67.4 61.7 60.0
32 mix. 3.3 3.9 5.6 11.3 15.3 13.5 13.3 13.1 11.5 10.1 10.1 22.1 63.2 60.8 48.7
64 mix. 2.9 3.5 5.0 10.3 13.3 11.5 12.5 12.5 11.2 9.9 9.3 20.5 64.5 60.6 48.5

GMM+∆LSF
16 mix. 4.4 5.1 6.9 13.5 15.6 15.2 17.6 14.4 18.9 12.2 12.4 24.7 72.4 93.0 63.4
32 mix. 4.0 4.4 6.5 12.9 14.1 14.5 16.4 13.0 17.2 11.4 11.4 24.4 67.0 87.2 59.5
64 mix. 3.9 4.2 6.2 12.0 12.3 12.9 14.6 11.6 15.0 10.5 10.3 21.6 64.7 81.4 55.9

Table 2. Performance comparisons with WB data.

Method Model MSE (×10−3)
Missing element Missing subvector

order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Avg.

1 2 3 4 5
Avg.

DMM+∆LSF
16 mix. 1.4 1.8 2.5 3.3 3.3 2.9 2.7 3.0 2.9 2.7 3.1 3.3 3.8 3.6 3.8 3.4 3.0 9.0 21.3 14.6 16.5 29.7 18.2
32 mix. 1.3 1.5 2.5 3.1 3.0 2.8 2.7 2.7 2.8 2.6 2.9 3.1 3.6 3.5 3.5 3.4 2.8 8.6 20.8 14.3 16.0 29.3 17.8
64 mix. 1.3 1.3 2.4 3.0 2.9 2.7 2.6 2.6 2.6 2.5 2.9 3.1 3.6 3.5 3.5 3.3 2.7 8.4 20.8 14.0 16.0 29.2 17.7

GMM+LSF

16 mix. 1.5 2.9 4.6 7.8 7.0 6.1 6.2 5.8 5.8 6.3 7.7 8.4 9.1 7.5 6.0 4.1 6.1 10.9 25.8 19.2 26.8 30.5 22.6
32 mix. 1.4 2.4 4.0 6.8 6.0 5.5 5.6 5.4 5.2 5.7 7.0 8.2 8.5 6.5 5.5 3.9 5.5 10.0 23.9 17.7 25.9 29.8 21.5
64 mix. 1.2 2.1 3.8 6.3 5.2 5.1 5.2 5.1 4.7 5.4 7.1 7.5 8.0 6.3 5.4 3.8 5.1 9.7 22.4 16.5 25.6 29.8 20.8

GMM+∆LSF

16 mix. 2.0 2.3 4.7 7.1 6.4 7.2 5.6 7.4 6.4 6.3 8.1 9.3 10.6 9.0 8.0 5.8 6.6 13.3 31.8 27.6 33.0 58.2 32.8
32 mix. 1.8 2.4 4.4 6.6 5.8 6.8 5.6 6.7 6.0 6.1 7.5 9.3 10.0 8.6 7.3 5.9 6.3 11.8 29.3 26.1 31.4 55.8 30.9
64 mix. 1.7 1.8 4.2 5.8 5.4 6.5 5.2 6.3 5.5 5.9 7.7 8.6 10.3 9.1 7.2 5.8 6.1 11.5 28.2 24.6 31.1 5.1 30.1

comparison. We ran 50 rounds of simulations and the mean
values are reported.

The TIMIT database [25] was used to get a training and
a test set of LSF/∆LSF parameters. TIMIT is a corpus of
phonemically and lexically transcribed speech of female and
male American English speakers of different dialects. To
obtain the NB data, the 16 kHz speech signal was firstly
downsampled by a factor of 2. With window length equal
to 25 milliseconds and step size equal to 20 milliseconds,
approximately 497, 000 LSF/∆LSF vectors were selected
for the training partition, and about 178, 000 LSF/∆LSF
vectors were obtained for the test partition. The Hann win-
dow was applied to each frame and no prefilter was used.
All the silent frames were removed. Table 1 lists the com-
parison results when transmitting the LSF/∆LSF elements
individually. When the LSF/∆LSF parameters are parti-
tioned into subvectors and transmitted, the comparisons are
also shown in Table 1. It can be observed that the proposed
DMM+∆LSF method performs better (with smaller MSE)
than the other two methods in both scenarios. As the model
order (number of mixture components) increases, the estima-
tion performance is also improved. We believe this is because
the ∆LSF representation of the LSF parameters can explic-
itly exploit the boundary and ordering properties.The ∆LSF
representation captures the correlation between the missing
part and the received part more efficiently. Moreover, since
the GMM+∆LSF method performs the worst among all the
three methods, it suggests that DMM is an efficient statistical
model in describing the underlying distribution of the ∆LSF
parameters.

Similar facts can also be observed from Table 2, where
the WB data is used for evaluation. In the WB data case,
frame extraction settings are the same as those in the NB data
case. About 497, 000 and 178, 000 LSF/∆LSF vectors were
obtained from the training and test partitions, respectively.

Table 3. Comparisons of model complexities.

Number of mixture components
Number of free parameters

DMM+∆LSF GMM+LSF GMM+∆LSF
NB WB NB WB NB WB

16 191 287 335 527 367 559
32 383 575 671 1055 735 1119
64 767 1151 1343 2111 1471 2239

The model complexity comparisons, in terms of free pa-
rameters used in describing the model, are listed in Table 3.
Compared to the other two method, the DMM+∆LSF method
performs better and has the lowest model complexity.

6. CONCLUSIONS

As an efficient representation of the line spectral frequency
(LSF) parameters, the ∆LSF parameters are used in linear
predictive (LPC) model quantization and transmission. In
order to deal with the packet loss occurring during the ∆LSF
parameter transmission, we proposed an optimal nonlinear
estimator, in the sense of minimum mean square error, to
recover the missing part from the received available informa-
tion. The proposed method is based on a Dirichlet mixture
model (DMM). With the neutrality property of the Dirich-
let variable, an analytically tractable solution is derived.
With both NB and WB data evaluations in all the transmis-
sion scenarios, we can conclude that transmitting the LPC
model with the ∆LSF representation and applying the pro-
posed DMM+∆LSF method can significantly enhance the
signal quality when packet loss occurred. Furthermore, the
DMM+∆LSF method has requires less memory.
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