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ABSTRACT 
 
This work proposes the use of an elastic-net to reconstruct 
Magnetic Resonance Images from their partially sampled 
K-space. The resulting elastic-net formulation of this 
problem is composed of two terms – the first term 
promotes sparsity and the other one promotes a grouping 
effect. The advantage of using an elastic-net for MRI 
reconstruction is that it can recover the hierarchically 
correlated sparse wavelet coefficients of the image. We 
develop two reconstruction methods via two elastic-net 
formulations - the synthesis prior and the analysis prior. 
We also impose non-convex sparsity penalties. There are 
no existing algorithms that solve such problems; hence we 
derive efficient algorithms for solving them. The 
experimental results show that our proposed analysis prior  
method outperforms state-of-the-art in MRI 
reconstruction. 
 
Index Terms— elastic net, compressed sensing, MRI. 
 

1. INTRODUCTION 

In Magnetic Resonance Imaging (MRI), the acquisition 
model is expressed as, 

2,  (0, )y Fx Nη η σ= + :      (1) 
where x is the underlying MRI signal that needs to be 
reconstructed, F is the Fourier mapping from the image 
domain to the frequency space, y is the acquired data in 
the frequency space (K-space) and η is the noise.  

When the K-space is fully sampled on the uniform 
Cartesian grid, the reconstruction is trivial – i.e. an inverse 
FFT is simply applied on the collected K-space samples y 
to reconstruct the image x. However, the full sampling of 
the K-space on a uniform Cartesian grid is time 
consuming and is the main source of delay in MRI 
acquisition. The straightforward way to accelerate the 
MRI scan time is to partially sample the K-space. The 
partially sampled K-space data acquisition is modeled as,  
y RFx η= +      (2) 

where R is the sampling mask.  
Such partial K-space sampling reduces the acquisition 

time, but the reconstruction becomes challenging. 
Equation (2) is an under-determined linear inverse 
problem since the number of collected K-space samples is 
less than the number of pixels in the image.  

Presently the most obvious way to solve (2) is to 
employ compressed sensing techniques e.g. as in [1-3]. 
Therefore to reconstruct the MR image, its sparsity in the 
wavelet transform domain is exploited. The Wavelet 
transforms that are employed in MRI reconstruction are 
either orthogonal or tight-frame1. For both cases, the 
transform coefficient vector α and the image domain 
signal x are represented by the analysis-synthesis 
equations: 

:analysis Wxα =      (3a) 

: Tsynthesis x W α=     (3b)  
Incorporating the synthesis equation (3b) into the 

partial K-space data acquisition model (2), one gets 
Ty RFW α η= +      (4) 

The sparse transform coefficients are easily solved by lp-
norm minimization [1-3],  

2

2
ˆ min  subject to p T

p
y RFW

α
α α α ε= − ≤   (5) 

where p p
ip

i
α α=∑ and 2nε σ=  , n being the number 

of K-space samples. 
Once the wavelet coefficients α are recovered, the image 
is obtained by applying the synthesis equation (3b). 

The aforementioned synthesis prior formulation (5) is 
the most common technique for CS based MRI 
reconstruction; it is applicable for both orthogonal and 
tight-frame transforms. However, it was observed in [3-5] 
that better results are obtained when tight-frames are used 
with the alternate analysis prior formulation: 

2

2
ˆ min  subject to p

px
x Wx y RFx ε= − ≤   (6) 

For the orthogonal transforms, the analysis and the 
synthesis prior are equivalent theoretically; but they are 
not the same for tight-frames.  

The wavelet transform of piecewise smooth images 
have a tree sparse structure, i.e. if there is a high valued 
coefficient at a higher wavelet scale, then there is a high 
valued coefficient at the corresponding positions at the 
lower scales as well. Several studies  have analysed the 
tree structured sparsity [6, 7] of the wavelet transform. 
They show that, incorporating the structural information 
into the sparsity assumption yields better reconstruction 
results. 
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Solving the inverse problem (4) by assuming tree 
structured sparsity is a challenging task since the 
algorithm requires searching for the tree structure at every 
iteration. This is a computationally intensive process and 
hence the algorithms proposed for solving the tree-
structured sparsity problem [8, 9] are not scalable enough 
for MRI reconstruction. 

A smarter alternative was proposed in [10]. It does 
not explicitly exploit the tree-structure, but groups the 
wavelet coefficients into overlapping groups by following 
this structure. The groups are defined by the finest scale 
indices, and the indices at lower resolutions belong to 
multiple groups. Such a group-sparsity problem can be 
solved efficiently, and as shown in [10], this formulation 
leads to very good MRI reconstruction results. 

In this work, we do not impose such strong group-
sparsity constraints. What we observe is that the sparse 
wavelet coefficients for a piece-wise smooth signal are not 
really independent. If the leaf node is of high value, it is 
likely that the root nodes will be of high values as well. 
High valued coefficients do not occur independently in the 
wavelet domain but are hierarchically correlated. 

Based on this assumption, we formulate an elastic-net 
problem for MRI reconstruction. The elastic-net [11, 12] 
is a popular convex regression technique in the machine 
learning community. Our work is influenced by studies in 
non-convex CS [1-3]; therefore instead of the convex 
elastic-net [11, 12] we propose a non-convex version of it. 
Moreover, the original elastic-net is a synthesis prior 
formulation; motivated by the success of analysis prior 
formulation for MRI reconstruction [3-5] we propose a 
novel analysis prior elastic net formulation. Non-convex 
versions of synthesis and analysis prior elastic-net 
regularization are new; thus there are no efficient 
algorithms to solve them. We derive simple and efficient 
algorithms to solve these problems. 

The rest of the paper is organized into several 
sections. The following section briefly discusses the 
elastic-net formulation. In section 3, we frame MRI 
reconstruction as an elastic-net problem. The algorithms 
for solving the optimization problems are derived in 
section 4. The experimental results are discussed in 
section 5. Finally, the conclusions of the work are shown 
in section 6.  

2. ELASTIC-NET REGULARIZATION 

Consider the classical regression problem:  
2,  (0, )y Ax Nη η σ= + :     (7) 

where y is a vector of the collected data, the A matrix 
consists of the explanatory variables, x is the unknown 
weight vector which interprets the data in terms of the 
explanatory variables and η is the noise.  

Since the noise is assumed to be Normally 
distributed, one needs to minimize the least squares cost 
function. In most cases, the problem is not well 
conditioned and needs to be regularized. 

The most straightforward regularization is the ridge 
regression, which is expressed as: 

2 2

2 2
minridge x

x y Ax xλ= − +     (8)  

Unfortunately ridge regression results in a dense 
solution, i.e. it explains the data in terms of all the 
explanatory variables. The outcome lacks interpretability. 
In order to overcome this issue, the LASSO (least angle 
shrinkage and selection operator) was proposed in [13]. 
LASSO replaces the l2-norm constraint by an l1-norm: 

2

2 1
minlasso x

x y Ax xλ= − +    (9) 

The l1-norm penalty promotes selection of very few 
variables, i.e. the weight vector x is sparse.  

The selection of few variables improves 
interpretability. One can now analyze and interpret the 
data with only a few explanatory variables.  

However, LASSO suffers from a serious 
shortcoming. In most cases the explanatory variables are 
not independent from each other, they are correlated. In 
such a situation, the LASSO selects only one variable 
from the group of correlated ones. This is the result of 
enforcing too much sparsity on the variable selection 
operation. One would like to know all the variables which 
have contributed to the outcome (y); but LASSO ignores 
the correlated variables and thus loses out on correct 
interpretability. In order to promote the grouping of 
correlated variables, the elastic net regularization was 
proposed in [11]. The optimization problem is framed as 
follows: 

2 2
1 22 1 2

minnet x
x y Ax x xλ λ= − + +   (10) 

Here the l1-norm constraint promotes sparsity (as in 
LASSO) but the l2-norm constraint promotes selection of 
correlated variables. 

3. PROPOSED FORMULATION 

We are interested in MRI reconstruction, where the task is 
to recover the sparse wavelet transform coefficients from 
the partial K-space data (3). We argued above that the 
high valued wavelet coefficients do not occur 
independently; rather the wavelet coefficients at the 
different scales are hierarchically correlated.  

Generally lp-minimization such as (5) and (6) above, 
is employed to recover the sparse wavelet transform 
coefficients [1-3]. But such lp-minimization suffers from 
the same shortcomings as the LASSO - there is always a 
chance that the lp-minimization will not recover all the 
hierarchically correlated wavelet coefficients. In order to 
address this issue, we propose an elastic-net like 
regularization term for both the synthesis and analysis 
priors respectively : 

22

2 2
ˆ min +  subject to p T

p
y RFW

α
α α η α α ε= − ≤  (11) 

2 2

2 2
ˆ min +  subject to p

px
x Wx Wx y RFxη ε= − ≤  (12) 

Here the lp-norm enforce sparsity in the selected variables, 
but the l2-norm promotes selection of grouped variables. 

Such non-convex elastic-net problems have not been 
formulated before, especially the analysis prior 
formulation (12) is entirely new. There are no efficient 
algorithms to solve these problems. In the following 
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section, we derive the algorithms for solving these 
optimization problems. 

4. SOLVING THE OPTIMIZATION PROBLEMS 

The task is to solve (11) and (12). Solving the constrained 
optimization problems is difficult. Therefore we will 
derive algorithms to that minimize their unconstrained 
counterparts. 

2 2

2 2

1: +
2 2

p

p
synthesis y Ax x x

p
λ λ η⋅− +   (13) 

2 2

2 2

1: +
2 2

p

p
analysis y Ax Hx Hx

p
λ λ η⋅− +   (14) 

The formulations (13), (14) are equivalent to (11), (12). 
for correct choice of the parameters λ and ε. Unfortunately 
the relationship between these two parameters is not 
analytical. However, when ε is known, it is possible to 
find λ by global cross validation or via the L-curve 
method.  

The first simplification for both the analysis and the 
synthesis priors is to assemble all the l2-norm terms 
together, so that (13) is recast as (15). 

2

2

1 ' '
2

p

p
y A x x

p
λ− +     (15) 

where '  and '
0

Ay
y A

Iλ η
⎛ ⎞⎛ ⎞

= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠
. 

Similarly, the analysis prior form (14) can be recast as 
(16) using similar notations: 

2

2

1 ' '
2

p

p
y A x Hx

p
λ− +     (16) 

where '
A

A
Hλ η

⎛ ⎞
= ⎜ ⎟⎜ ⎟⋅⎝ ⎠

. 

In the second step, we introduce a variable splitting, 
as is done in alternating directions methods [14]; this will 
decompose the original problem into two easy sub-
problems. 

2 2

2 2

1 1' '
2 2

p

p
y A x x w w

p
λ− + − +    (17) 

2 2

2 2

1 1' '
2 2

p

p
y A x x w Hw

p
λ− + − +   (18) 

Here w is  a proxy for x. We proceed by alternately 
fixing one variable and solving for the other (i.e., 
alternating direction), and iterating. For both (17) and 
(18), with fixed w, the subproblems in x are quadratic: 

2 2

2 2

1 1' '
2 2
y A x x w− + −     (19) 

This can be recast as: 
2

2

1 '' ''
2
y A x−      (20) 

where 
' '

''  and ''
y A

y A
w I

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and has a closed form solution, but in practice (20) is 
easily solved by Conjugate Gradient (CG) methods.  

In the next step of the iteration, we fix x, and solve 
the following subproblems: 

2

2

1
2

p

p
x w w

p
λ− +     (21) 

2

2

1
2

p

p
x w Hw

p
λ− +     (22) 

Solving (21), is straightforward, via the p-shrinkage 
operator [15, 16]. For each element i, this is defined as: 

1( )max(0, )p
i i i iw signum x x x

p
λ −= −   (23) 

Solving the subproblem (22) is slightly more 
complicated. Differentiating (22) yields, 

2,  where (| | )T px w H DHx D diag Hxλ −− + =  (24) 
Setting the gradient to zero, one gets 
( )TI H DH w xλ+ =     (25) 
Using the matrix inversion lemma, 

1 1 11( ) ( )T T TI H DH I H D H H Hλ
λ

− − −+ = − +  

we have the following identity, 
1 11( )T Tw x H D H H Hx

λ
− −= − +    (26) 

Or equivalently, 
1 11( )

where 

T

T

z D H H Hx

w x H z
λ

− −= +

= −

     (27) 

Solving z requires solving the following, 
11( )TD H H z Dx

λ
− + =     (28) 

Adding cz to both sides of (28) and subtracting HTHz 
gives, 

1 11( ) ( ( ))

where 

T

T

z D cI cz H x H z

w x H z
λ

− −= + + −

= −
  (29) 

where c is the maximum eigenvalue of WTW. 

Inverting 11( )D cI
λ

− + is easy since D is a diagonal 

matrix. This is a coupled equation, in practice it is solved 
iteratively, i.e. at the kth iteration, 

1 1
1 1

1( ) ( ( ))T
k k kz D cI cz H x H z

λ
− −

− −= + + −    

The last step of the algorithm is to relax the equality 
constraint, between x and w so that instead of having 

2

2
x w− as in (19), we have a relaxed version of it, 

2 2

2 2

1 1' '
2 2
y A x x wβ− + + −    (30) 

where β is the dual variable, which is updated as, 
x wβ β← + −       (31) 

Owing to limitations in space, we cannot write the 
algorithms concisely; therefore in this section we have 
only outlined the major milestones of the algorithm. 
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5. EXPERIMENTAL EVALUATION 

In this work, we have performed an experimental study on 
three different MR images (Fig. 1).  The ground-truth data 
is collected by fully sampling the k-space on a uniform 
Cartesian grid. All the images are of size 256 x 256. For 
the experiments, the variable density random sampling 
with 3 fold acceleration factor (i.e. 33% sampling) is used 
for simulating the partial sampling of the K-space.  

 
Fig. 1. Left to Right: Spine (rat), Brain and Phantom. 

Our method requires specification of three 
parameters: p, η and λ. We found that p = 0.8 yields the 
best results. The values of η = 0.25 and λ = 0.1 were 
found via the L-curve method. We used the complex dual-
tree wavelet as the sparsifying transform. 

The results of quantitative evaluation are given in 
Table 1. Normalized Mean Squared Error (NMSE) is the 
standard metric used for evaluating MRI reconstruction. 
We compared our approach with the sparse recovery 
method [1] and the overlapping group-sparse recovery 
method [10].  

Table 1: Reconstruction Results 
Dataset Sparse [1] Group-

sparse [10] 
Synthesis 
prior 
elastic-net 

Analysis 
prior 
elastic-net 

Spine 0.12 0.08 0.09 0.05 
Brain 0.18 0.13 0.15 0.09 
Phantom 0.23 0.15 0.18 0.11 

The results are as expected. The sparse recovery 
technique [1] does not assume anything apart from 
sparsity in the wavelet domain. It uses the most 
generalized formulation and undoubtedly yields the worst 
results. The overlapping group-sparsity prior [10] enforces 
the most stringent constraints on the reconstruction 
problem and yields very good results. Our elastic-net 
formulation does not enforce strict group-sparsity but 
encourages grouping effect. Both [1] and [10] are 
synthesis prior formulations. Our synthesis prior 
formulation is only marginally worse than [10]; but the 
analysis prior formulation yields considerably superior 
results than [10]. The fact that analysis prior yields better 
results than the synthesis prior have been observed before 
[3-5]. 

For qualitative evaluation, the 4 reconstructed and the 
4 difference images are shown in Fig. 1. Owing to 
limitations in space, we only show the results for the brain 
image. The difference images are contrast enhanced by 10 
times for visual clarity. 

 

 
Fig. 2. Reconstructed and difference images. Left to 
Right: sparse recovery [1], group-sparse recovery [10], 
proposed synthesis prior and proposed analysis prior. 

The qualitative results corroborate the quantitative 
observations. The difference images (between ground-
truth and reconstructed) show that sparse recovery method 
yields the worst results, followed by our proposed 
synthesis prior elastic-net. The best results are obtained by 
our analysis prior elastic-net formulation, followed by the 
over-lapping group sparse recovery technique [10]. This is 
also evident from the reconstructed images. The images 
reconstructed by the Sparse recovery and our synthesis 
prior elastic-net methods have considerable reconstruction 
artifacts. But these artifacts are virtually non-existent in  
the group-sparse recovery technique [10] and in our 
analysis prior formulation. 

6. CONCLUSION 

Generally, lp-norm minimization methods  are employed 
for reconstructing MR images from partially sampled K-
space data. Such methods exploit the sparsity of images in 
the wavelet domain for reconstruction. It is well known 
that  the wavelet coefficients of such images show a tree-
structure, i.e. if a coefficient at a higher scale has a high 
value, the corresponding wavelet coefficient at each of the 
lower scales will also exhibit high values. Standard lp-
minimization fail to explicitly capture this hierarchical 
correlation. 

Algorithms that explicitly exploit the wavelet tree-
structure are not scalable for practical MRI problems. A 
recent work has proposed an overlapping group-sparse 
formulation based on  this tree-structure [10] and has  
shown significant improvements over the standard lp-
minimization methods. In this work, rather than assuming 
a strong group-structure, we propose to impose a grouping 
effect via elastic-net formulation. The resulting synthesis 
prior formulation yields better results than standard l0-
minimization [1] but is slightly worse than [10]. Our 
analysis prior formulation however,  yields even better 
reconstruction than the group-sparsity formulation [10]. 

Single channel MRI reconstruction is the simplest 
problem in this domain. This work shows how it can be 
improved via the elastic-net formulation. In the future, we 
plan to exploit this hierarchical correlation in the wavelet 
domain for solving more complex MRI reconstruction 
problems, such as those arising in multi-channel parallel 
MRIs and multi-echo MRIs. 
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