2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

JOINT RECOVERY OF UNDER SAMPLED SIGNALS ON A MANIFOLD: APPLICATION TO
FREE BREATHING CARDIAC MRI

Sunrita Poddar, Sajan Goud Lingala, Mathews Jacob

University of lowa, IA, USA

ABSTRACT

We introduce novel algorithms for the joint recovery of an
ensemble of signals that live on a smooth manifold from
their under sampled measurements. Unlike current methods
that are designed to recover a single signal assuming perfect
knowledge of the manifold model, the proposed algorithms
exploit similarity between the signals without prior knowl-
edge of the underlying manifold structure. Our first algorithm
is a two-step scheme, where the Laplacian of the graph as-
sociated with the manifold is estimated from similar under
sampled measurements made on the signals; this Laplacian
is used to formulate the problem as a penalized optimization
scheme, where smoothness of the signals on the manifold is
chosen as the penalty. The second algorithm is an iterative
scheme that alternates between computation of the Laplacian
and the signals. Validation of the proposed algorithms using
simulations and experimental MRI data demonstrate their
utility in accelerating free breathing cardiac MRI.

Index Terms— cardiac MRI, manifolds, compressive
sensing, cine, free breathing

1. INTRODUCTION

We consider the joint recovery of an ensemble of high dimen-
sional signals that live on a smooth low dimensional manifold
from their under-sampled measurements. Such manifold sig-
nal models are appropriate when the signals vary smoothly as
a function of a few parameters. Since the dimension of the
manifold is often much lower than the ambient dimension,
this representation is compact. Our main focus is to exploit
the smoothness of the signals on the manifold to make their
recovery from under sampled data well-posed.

The main motivation behind this work is the joint recon-
struction of a free breathing cardiac image series from MRI
data. It is impossible to fully sample each image due to the
slow nature of MR acquisitions. The rapid shape changes of
the myocardium as a function of time makes it difficult to
pose the problem as a temporal smoothness regularized opti-
mization scheme; temporal smoothing will result in extensive
blurring of myocardial borders. Each image in the time series
is completely characterized by two free parameters—cardiac
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phase and respiratory phase. If the phases at each time instant
can be measured, the Fourier data can be appropriately binned
to recover the images. However, the direct measurement of
the physiological signals is challenging in many cases due to
the interference between the image acquisition scheme and
the acquisition of the physiological signals. Recent self nav-
igation strategies that extract cardiac and respiratory phases
from the temporal variations of the central Fourier sample
(d.c term) are attractive alternatives [1]. However, the utility
of these schemes are heavily dependent on the coil geometry
and location and the orientation of the slices.

We propose to recover the images lying on a manifold
from under sampled measurements. This approach may be
viewed as a generalization of the self navigation strategies
[1] since knowledge about the manifold structure is recov-
ered from Fourier measurements. This approach relies on the
isometry of the cardiac and respiratory phases to the images,
which is generally true in cardio-pulmonary imaging.We for-
mulate the joint recovery of the images that live on the mani-
fold as a smoothness regularized optimization scheme, where
the regularization penalty is the integral of the square of the
gradient magnitude on the manifold. The discretization of
this penalty provides a weighted linear combination of im-
age differences, where the weights are non-linear functions
of local distances between points. Recent results on compres-
sive manifold embedding guarantee the accurate recovery of
local distances from their under sampled Gaussian measure-
ments, provided the number of measurements are greater than
a lower bound that is dependent on the dimension of the man-
ifold [2]. Based on these findings, we propose two algorithms
for the recovery of the weights and the signals. The first ap-
proach is a two step scheme, where the local distances are
estimated from under-sampled measurements acquired using
the same sampling matrix. These distances are used to de-
fine the graph Laplacian, which is used to jointly recover the
images. The second algorithm is essentially an iterative re-
finement of the two-step strategy, where the graph Laplacian
is re-computed from the image estimates and is used to spec-
ify the criterion at the next iteration. We show that this iter-
ative approach is essentially a majorize-minimize algorithm
to solve a smoothness penalized optimization scheme, where
the smoothness penalty is computed using a robust scheme.

Most of the current manifold schemes focus on the re-
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covery of a single signal on the manifold, assuming perfect
knowledge of the manifold [2]. In contrast to these schemes,
we do not make any assumptions on prior knowledge of the
manifold; the structure of the manifold in our setting is heav-
ily dependent on the respiration pattern, as well as cardiac
and respiration rate. Our approach is conceptually similar to
the non-local schemes in [3], where the manifold structure
of image patches are exploited. However, in the patch set-
ting, each of the measurements is a linear combination of all
of the signals on the manifold; it is difficult to use the theo-
retical tools in [2] in this setting. We consider the recovery
of several signals, each of which are sampled independently.
We validate the proposed algorithm on free breathing cardiac
CINE data. The proposed algorithm provided high quality re-
constructions with minimal artifacts. These results show that
there is a strong isometry between the phases and images.

2. PROBLEM FORMULATION

We consider the recovery of signals x1,x2,...x, € M C
RY where M is a smooth m-dimensional manifold isometric
to the parameter space: ® C R™ (m << N). Specifically,
we assume that there exists 61,05,...,0,, € R™ such that
lx; — x;|| o [|@; — @;|. In our setting 8; is a 2-D vector
whose elements are the cardiac and respiratory phases, and
x; is the image corresponding to these phases. We have the
under-sampled measurements:

yi = Aix; + ;. (D

Here, A, € RM x RV ; M < N is the linear measurement
operator for the i*" image and ), is the noise vector. Since
the measurement operators are under-determined, the direct
recovery of x; from their measurements is ill-posed.

The smoothness of the signals that live on the manifold
can be exploited by posing their recovery from their measure-
ments y as a Tikhonov regularized reconstruction scheme:

{x*} = argmin ||A(x) — y|* + /\/ |V mx||2dM  (2)
* M

—_———
foAdeM

Here, V o and A ¢ are the gradient on M and the Laplace-
Beltrami operator, respectively. Since we only have samples
x; on the manifold, we discretize the above problem as

k
{x;} =argmin ¥ [|Ax; —yi|> + AX"LX. (3
gt

Here X = | x{ xJ xF }T and L is the Laplacian
of the associated graph, specified by L = D — W. Here,

Wi ;= ([0; —05]), “)

where ( is an appropriately chosen localized non-linear func-
tion. D is the diagonal matrix, whose diagonals are specified

byD,; = > j W, ;. If the parameter vector (e.g. cardiac and
respiratory phases) corresponding to each image is known, L
can be computed.

2.1. Two-step manifold unaware recovery

As described earlier, it is often difficult to directly measure
the underlying parameter 8 along with the signal; it is de-
sirable to estimate the parameter—or equivalently W from
the measured data itself. Wakin [2], has recently shown that
under weak conditions, the measurement of the signal sam-
ples by the M x N Gaussian random matrix ®, specified by
y; = Px; preserves distances:

(L=e)llxi = x5 < [[®x; — x| < (1+€)[[xi =], (5)

provided M > 18¢~2 f(m), where f(m) is a non-linear
function that is dependent on the dimension of the manifold m
rather than the ambient dimension N. Note that the measure-
ment matrix ® is assumed to be the same for all the signals
x;;1 =1, .., k. Since we assume the manifold to be isometric
to the parameters (i.e., ||x; — x;|| o [|8; — 6;]|), we propose
to approximate (4) as

Wi = oo ([[®x; — x), (6)

where ¢’ is chosen appropriately.

Our final goal is to recover the images from their under
sampled measurements. While the same sampling pattern
needs to be used for all images to recover the weights as in
(6), this is not beneficial for the reconstruction of images us-
ing (3). If the same pattern is used every frame, there is lit-
tle value in exploiting the similarity beyond noise reduction.
Hence, we propose to use the sampling scheme

m:[g}&+m, ™
——
Ay
where we fix @ for all the signals, while B; are different for
different signals. This approach enables a two step recovery
strategy, where the weights are recovered according to (6) us-
ing @, while the recovery from A;x; is formulated as (3).

2.2. Iterative manifold-unaware recovery

Theoretical findings as well as our simulations suggest that
the weights estimated using (6) provide good approximation
for the original weights using (4). However, we expect that
re-computing the weights from the image estimates (specified
by (3)), can provide improved estimates, especially at high
undersampling factors. Specifically, we propose to alternate
between the following steps:

k
{XE")} = argn)lcinz [Aix; —yil|> + A XTLO"DX (8)
f =1

w = o (I =), ©
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where xgn);i = 1,..,k are the signals at the n'® iteration

and W™ and L(™ are the weight matrix and the Laplacian
matrix at the n'? iteration, respectively. Inspired by half-
quadratic regularization schemes in image processing [4, 5,
6], we have shown in [7] that this alternating approach can be
seen as a specific majorize minimize algorithm to solve:

{xi}= argf{r)l(i_l}lz A —yill3+2 Y 0> ol —x;ll2).
o i

(10)
where p(z) = ¢'(z)/(2x).
In this work, we choose the distance function as the trun-
cated ¢, penalty

)3 < ¢

W){ 2 /e/ e +e if an

2V/te + €2 else.

Here ¢ and € are constants. With this model, the weights are
specified by

IV : (n) ()2
W(»”-) _ Hﬁfﬁn)—m;")\lg+e if sz xj ||2 <t
7 0 else .

(12)
We introduce the threshold t because we want to penalize
large distances between vectors less heavily than small dis-
tances. Note that the widely used truncated Gaussian weight
functions also have similar saturating behavior. The factor €
ensures that ¢ is differentiable and W, ;=1. Since the cost
function specified by (10) is non-convex, the alternating algo-
rithm specified by (8) and (9) is not guaranteed to converge
to the minimum of (10). We propose to use the continua-
tion schemes introduced in [7] to improve the convergence
properties. The reformulation of the joint recovery scheme as
an optimization scheme enables us to initialize the algorithm
with arbitrary weights. Specifically, we propose to compute
the weights obtained from a simple scheme (e.g. zero filled or
temporal total variation recovery) to initialize the algorithm.
Hence, this method can also work with arbitrary sampling pat-

terns.
3. RESULTS

3.1. Simulation results

We use the Physiologically Improved Non uniform CArdiac
Torso (PINCAT) phantom [8] to generate a movie of the beat-
ing heart in the short axis view, assuming both cardiac and
respiratory motion. See a specific frame of the movie and the
temporal profile of a row in Fig. 3.(a) and (g). The ratio of
the duration of the respiratory to the cardiac cycle is fixed at
4.7. Each image is of size 128x128 and we create a data-set
of 600 frames which corresponds to roughly 35 cardiac cycles
and 7 respiratory cycles. These movies are undersampled us-
ing a variable density random sampling pattern in the Fourier
domain. The sampling mask has higher sampling density in
the centre of k-space and the density decreases as we move
into outer kspace.

We first determine the accuracy of the weights estimated
from undersampled data using (6). The Fourier transform of
each image in the time series is measured on the same set of
locations. The relative error between the weights computed
from fully sampled data and the ones obtained from under-
sampled data are plotted in Fig. 1. These comparisons show
that local distances on the manifold can be reliably recovered
from approximately 5-7% kspace samples of the data.

We consider the recovery by the proposed two-step and
iterative methods in Fig. 3. We use the sampling pattern de-
scribed by (7), which is illustrated in Fig. 3.(b) and (h). The
sampling pattern at each frame is chosen randomly using a
variable density mask. We set the undersampling factor to be
6.67; only 15% of the Fourier samples are retained in each
frame. A fraction of these samples (corresponding to ¢ in
(7)) are assumed to be at the same locations for all the frames,
while the rest are chosen at random locations. The zero filled
IFFT reconstruction are shown in Fig. 3.(c) and (i).

Fig. 3.(d) & (j) show the reconstructions when the sam-
pling pattern is assumed to be same in every frame. Specif-
ically, we set A; = ®;Vi. The recovery of the weights is
highly accurate since we are retaining 15% of the samples; see
from Fig. 1 that only 7% is sufficient to yield accurate weights
in this example. However, the lack of diversity between the
sampling patterns results in poor reconstruction performance.

We consider the sampling pattern specified by (7), where
7% of the samples are the same locations across frames. The
rest (8% of samples) are chosen at random locations. The
diversity in the sampling patterns is observed to provide better
reconstructions in Fig. 3.(e) and (k). The iterative scheme
further improves the results, as seen from Fig. 2.

3.2. Experimental results

We test the iterative recovery algorithm on a cardiac data-set
from a 3T MR scanner (Siemens, Trio). The data was ac-
quired using 12 coils in the short-axis view using a steady
state free precession radial sequence. We use the golden an-
gle ordering of the rays, where the angle between two con-
secutive rays is 111.25°. We use 9000 acquired lines to re-
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Fig. 1: Accuracy of weight estimation by (6): We plot the normal-
ized error between the weights estimated from fully sampled data
and under sampled data using (6) as a function of the fraction of
kspace samples measured. The recovery is accurate for greater than
7% measured Fourier samples
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(a) Ground truth
(17.03dB)

(b) Samp. mask: kx-ky (c) Zero filled IFFT (d) 2 step: A; = & (
(15.10dB) (®;B;)(21.02dB)

e) 2 step: A; = (f) Iterative: A; = B;

(23.32dB)

(g) Ground truth (h) Samp. mask: kx-t (i) Zero filled IFFT

(G) 2step: A; =@

(k) 2 step: A,
(®;By)

= (1) Iterative: A; = B;

Fig. 3: Validation of algorithms on PINCAT free breathing phantom. (a),(c)-(f) Specific image in the time series and its reconstruction
(g2),(1)-(1) Time profile of a specific row of the image series. (a)&(g) Ground-truth(b)&(h) Mask used to sample Fourier data. A fraction of
the samples are acquired at the same locations for all the frames, which is required for the two step approach. (c) Zero-filled IFFT recovery
(d) 2-step scheme with with the same sampling masks for all the frames (A; = ®) (e) 2-step scheme with sampling masks chosen according
to (7). Some of the sample locations in each frame are the same across the frames, while the rest are chosen randomly. (f) Iterative scheme,

with different random sampling pattern at each frame.
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Fig. 2: Accuracy of reconstruction algorithms: We plot the signal
to error ratio of reconstructions as a function of the fraction of total
kspace samples measured per frame. 2 plots for the 2-step strategy
are shown with 3% and 7% respectively of the samples per frame
measured at common locations for recovery of W. Iterative strat-
egy is also shown which has no samples at common locations every
frame.

construct 600 frames, which corresponds to a temporal reso-
lution of approximately 45 ms. The gridding reconstruction is
shown in Fig. 4.(a)&(c). Note that the two step method can-
not be used in this case since we do not acquire the samples
at the same location in each frame. The reconstruction using
the iterative scheme is shown in Fig.4.(b)&(d). This experi-
ment shows that good recovery of a free breathing CINE MRI
dataset can be obtained using the proposed scheme.

4. CONCLUSION

We introduced two novel algorithms for the joint recovery of
several signals that live on a smooth manifold. The joint re-
covery scheme only requires the information of local distance
distributions on the manifold to obtain the associated graph
Laplacian, which is estimated from the under sampled data
itself. The first algorithm is a two-step method, which es-

’)

(a) Gridding reconstruction (b) Proposed reconstruction

(c) Gridding reconstruction (d) Proposed reconstruction

Fig. 4: Validation of iterative algorithm on experimental data (a)
& (b)A specific image in the time series, recovered using gridding
reconstruction and the proposed iterative scheme respectively. (c) &
(d) Time profiles of the above images along line shown in (a). Since
the data is acquired using golden-ratio patterns, two step schemes
cannot be used for the recovery.

timates the Laplacian from similar under sampled measure-
ments on all the signals; the Laplacian is then used to recover
the signals. Since the second scheme alternates between the
estimation of Laplacian and signal recovery, it can be used
for arbitrary sampling patterns. We observe that our iterative
scheme works well and outperforms the two-step approach
for high under-sampling factors. We conclude that for our
reconstruction scheme, it is beneficial to sample signals ly-
ing on a manifold using incoherent sampling masks since it
results in better recovery. Our work results in a simple but
efficient alternative to breath-held cardiac MRI.
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