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ABSTRACT
Inspired by the recently proposed Magnetic Resonance Fin-
gerprinting technique, we develop a principled compressed
sensing framework for quantitative MRI. The three key com-
ponents are: a random pulse excitation sequence following
the MRF technique; a random EPI subsampling strategy and
an iterative projection algorithm that imposes consistency
with the Bloch equations. We show that, as long as the ex-
citation sequence possesses an appropriate form of persistent
excitation, we are able to achieve accurate recovery of the
proton density, T1, T2 and off-resonance maps simultane-
ously from a limited number of samples.

Index Terms— compressed sensing, MRI, Bloch equa-
tions, manifolds, Johnston-Linderstrauss embeddings.

1. INTRODUCTION

In the recent paper [1], a new type of MRI acquisition scheme
called Magnetic Resonance Fingerprinting (MRF) is pre-
sented for the quantification of multiple tissue properties
simultaneously through a single acquisition process. The
procedure is composed of 4 key ingredients: (1) the material
magnetization is excited through a sequence of random RF
pulses; (2) after each pulse the response is recorded through
measurements taken from a small portion of k-space; (3) a
sequence of highly aliased magnetization response images
are formed using back projection; and (4) parameter maps
(proton density, ρ, T1, T2 and off-resonance, δf ) are formed
using a bank of matched filters comparing the “noisy” mag-
netization responses for each voxel with the predicted mag-
netization response for given parameter sets.

Inspired by this technique, we investigate this idea from
a compressed sensing (CS) perspective. In [1], it was men-
tioned that MRF was itself inspired by the recent growth of
compressed sensing techniques in MRI, however, the exact
link to CS was not made explicit and the paper does not con-
sider a full CS formulation. Indeed the role of sparsity, ran-
dom excitation and sampling are not clarified.

∗This work was initiated during a research visit by MD to EPFL funded
by EPSRC grant EP/K032275/1.

Here we identify separate roles for the pulse excitation
and the subsampling of k-space. We identify the Bloch re-
sponse manifold as the appropriate low dimensional signal
model on which the CS acquisition is performed and interpret
the “model-based” dictionary of [1] as a natural discretization
of this manifold. We then leverage recent results from [2] and
develop a recovery algorithm with good theoretical guaran-
tees. We conclude with some simulations to demonstrate the
efficacy of our approach.

2. IR-SSFP EXCITATION

2.1. The Bloch response manifold

The MRF process is based upon an Inversion Recovery
Steady State Free Precession (IR-SSFP) excitation sequence
(see, e.g., [3, 4]). Let i = 1, . . . , N , index the voxels of
the imaged slice. We will assume that within each voxel a
single isochromat dominates. The MRF excitation generates
a magnetization field that can be observed at each excitation
pulse. This field at voxel i at a given time t is a function
of the excitation parameters at time t (namely, the flip angle
αt and the repetition time TRt), the magnetization at time
t − 1, the overall magnetic field, the unknown parameters
θi = {T1, T2, δf} ∈ M associated with the local isochromat,
and the voxel’s proton density ρi ≥ 0 1. This overall dynam-
ics for an isochromat can be described by a parametrically
excited linear system [3, 4].

Now and subsequently, we will denote the magnetization
image sequence by a matrix X ∈ CN×L, with Xi,t denot-
ing the magnetization for voxel i at the tth read time. Given
that the initial magnetization is known, the magnetization re-
sponse at any voxel can be written as a parametric nonlinear
mapping from {ρi, θi} to the sequence Xi,: as follows

Xi,: = ρiB(θi;α,TR) ∈ C1×L, (1)

where L is the excitation sequence length, and B : M →
C1×L is a smooth mapping induced by the Bloch equation

1We treat the idealized case where ρi is assumed to be the actual proton
density. It is common practice in MRI to use ρ to represent a combination of
other factors such as coil sensitivity. In this case we simply let ρi ∈ C.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6949



dynamics. Note that we are representing the magnetization
response sequence for a given voxel i asXi,: ∈ C1×L, using a
Matlab style notation for indexing. Similarly, we will denote
the response image at a given time t by the column vector
X:,t ∈ CN .

2.2. Estimating the Bloch parameters from the responses

In order to be able to retrieve {ρi, θi}, it is necessary that
the excitation sequence (α,TR) is “sufficiently rich” so that
the voxel’s dynamics Xi,: is identifiable (random sequences
(α,TR) seem to suffice in practice). Mathematically, this
means that there is an embedding of R+ ×M into C1×L.2

We will call B = B(M;α,TR) ⊂ C1×L the Bloch response
manifold and denote its positive cone by R+B.

Inferring {ρi, θi} from the sequence Xi,: can be achieved
by locatingXi,: on R+B and evaluating the associated param-
eters. This can be approximated in practice by projecting onto
the cone of a discretized version of the response manifold.

Let θ(k)i = {T (k)
1 , T

(k)
2 , δf (k)}k=1:P be a discrete sam-

pling of the parameter space M to a desired accuracy. We
then construct a “dictionary” D ∈ CP×L of the magnetiza-
tion responses Dk = B(θ

(k)
i ;α,TR), k = 1, . . . , P . We also

construct a look-up table (LUT) to provide an approximate
inverse for B(θi;α,TR) such that θ(k)i = LUTB(k).

The approximate orthogonal projection onto the cone
of response manifold R+B, denoted by P̃R+B, satisfies
P̃R+B(Xi,:) = ρ̂iDk̂i

, where

k̂i ∈ argmax
1≤k≤P

Real(〈Dk, Xi,:〉)
‖Dk‖2

, (2)

and ρ̂i = max{Real(〈Dk̂i
, Xi,:〉)/‖Dk̂i

‖22, 0}. The Bloch
parameters corresponding to Xi,: satisfies θ̂i = LUTB(k̂i).

3. MRF IMAGING

For the complete spatial image, we have θ ∈ MN and ρ ∈
RN

+ . For convenience, let us denote the full mapping of the
product space as X = f(ρ, θ), with f : RN

+ × MN →
(R+B)N ⊂ CN×L.

Unfortunately, it is impractical to observe the full spatial
magnetization X:,t at each repetition time t within the nec-
essary time window. It is necessary to resort to some form
of undersampling. We can therefore define the observation
sequence Y:,t ∈ CM as

Y:,t = P (t)FX:,t, (3)

where F ∈ CN×N represents the forward discrete Fourier
transform, and P (t) ∈ {0, 1}M×N is a t-dependent projec-
tion onto a subset of the output coefficients. We will denote
the full linear observation mapping from the spatial magneti-
zation sequence to observation sequence as Y = h(X).

2Strictly speaking, this is only an embedding for ρi > 0.

3.1. MRF Matched filter reconstruction

In [1], the image sequence is reconstructed using back projec-
tion which is given by3

X̂:,t = FHP (t)TY:,t. (4)

Due to the high level undersampling, this process generates
extreme aliasing and therefore very noisy images. However,
Ma et al. argue that by projecting each voxel sequence onto
the Bloch response dictionary D, the noise can be suppressed
and relatively clean parameter maps can be generated.

The procedure works through a form of noise averaging.
Although each individual image is very noisy, the noise is
greatly reduced when the voxel sequences are projected onto
the Bloch response manifold. However, this ignores the main
tenet of CS: aliasing is not noise but interference and under
the right circumstances it can be completely removed. We
explore this idea next.

3.2. Compressed Quantitative MRI

In order to be able to retrieve {ρ, θ} from Y , we propose a
CS solution that has three key ingredients: a random pulse
excitation sequence following the original MRF technique; a
random subsampling strategy; and an efficient iterated pro-
jection algorithm [2] that imposes consistency with the Bloch
equations.

3.2.1. Bloch response recovery via iterated projection

In [2], the Projection Landweber Algorithm (PLA) was pro-
posed as an extension of the popular Iterated Hard Threshold-
ing Algorithm [5, 6]. PLA is applicable to arbitrary union of
subspace models as long as we have access to a computation-
ally tractable projection operator within the complete signal
space. In our case, the ideal algorithm is given by the recur-
sion

X(n+1) = P(R+B)N

[
X(n) + µhH

(
Y − h

(
X(n)

))]
, (5)

where n is the recursion index, P(R+B)N is the orthogonal
projection onto the signal model (R+B)N , and µ is a stepsize.

In practice, we replace the projection P(R+B)N by the ap-
proximate orthogonal projection, denoted by P̃(R+B)N , com-
puted by separately projecting the individual voxel sequences
X

(n)
i,: using the projector P̃R+B defined in Section 2.2. We

call the resulting algorithm BLIP (BLoch response recovery
via Iterated Projection).

The current theory for PLA guarantees stable recovery as
long as h satisfies a so-called Restricted Isometry Property

3This is actually only an approximation since in [1] the authors use a
nonuniform Fourier transform since their spiral read out does not lie on the
DFT grid.
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(RIP) for the signal model. That is, if there exists a constant
δ > 0 such that

(1−δ)‖X−X̃‖22 ≤ N
M ‖h(X−X̃)‖22 ≤ (1+δ)‖X−X̃‖22 (6)

for all pairs X and X̃ in (R+B)N . We will describe how
to achieve such an embedding later in section 3.2.2. Note that
the vectors of interest in the above RIP are the chords of R+B,
i.e., the vectors belonging to U := {R+B − R+B}\{0}.

The theory [2] also requires that M(1 + δ)/N < 1/µ <
3M(1 − δ)/(2N) for the successful recovery. If h is es-
sentially “optimal”, e.g., a random ortho-projector, then we
should set the stepsize µ ≈ N/M since in the large system
limit δ → 0. In practice, selection of the correct stepsize is
crucial in order to attain good performance from these iter-
ative projection based algorithms [7, 2]. While the matched
filter used in [1] can be interpreted as a single iteration of
PLA with µ = 1, a substantially more aggressive step size
is proposed by the theory and results in significant improve-
ments. In practice, we noticed that it is also beneficial to se-
lect adaptively the step size for PLA to ensure stability. In the
experiments, we use an adaptive stepsize selection as in [7].

3.2.2. Strategies for subsampling k-space

In order to ensure guaranteed parameter map recovery, recall
that (1) the excitation response mapping f must be an embed-
ding (achieved using a random excitation sequence (α,TR)),
and (2) the sampling operator h should satisfy a suitable RIP.
We will see that this latter condition is satisfied using an ap-
propriate undersampling strategy, if the vectors in U satisfies
certain conditions.

Since we only take a small number of measurements
at each repetition time, we cannot expect to achieve a sta-
ble embedding without imposing further constraints on the
excitation response. For example, if the embedding f was
induced in the first few repetition times and all further re-
sponses were non-informative, we would not have taken
sufficient measurements from the informative portion of the
response. Therefore, we need to consider responses that
somehow spread the information across the repetition times.
We quantify the spread of the information for the excitation
response through the flatness of the chords of R+B.

Definition 1 Let U be a collection of vectors {u} in CL. We
denote the flatness of the these vectors by

λ := max
u∈U
‖u‖∞/‖u‖2. (7)

Note that from standard norm inequalities L−1/2 ≤ λ ≤ 1.

The chords u ∈ U of R+B are considered sufficiently
flat if λ ∼ L−1/2. In Fig. 1, we present a plot λ−2/L as a
function of sequence length L for an example of the response
differences. From this plot, it can be deduced that λ−2 grows
roughly proportionally to L.

In constructing our measurement function h, we note that
the signal model contains no spatial structure. Therefore,
we should expect to uniformly sample k-space in order to
achieve an embedding, in contrast to the variable density sam-
pling of [1] (experiments in [9] support this argument). As
no spatial structure is considered, we describe, for simplic-
ity, our sampling strategy for a 1D signal of N pixels. Let
k1, . . . , kN ∈ {0, . . . , N − 1} denote the N measurable dis-
crete frequencies. Then, we define a random measurement
operator by P (ζt)F , where (ζt)1≤t≤L is a sequence of inde-
pendent random variables uniformly drawn from {0, . . . , p−
1} and P (ζt) ∈ {0, 1}M×N has entries

(P (ζt))i,j =

{
1 if kj = (i− 1)p+ ζt,
0 otherwise. , (8)

with i = 1, . . . ,M and j = 1, . . . , N . For convenience, we
assume that p divides N exactly so that N = pM . In words,
we regularly subsample the k-space by a factor of p with ran-
dom shifts of the selected samples across time. For 2D im-
ages, this corresponds to a regular subsampling of the k-space
in one direction and a complete sampling of the selected lines
in the other direction. This can be achieved using a random-
ized version of multishot Echo-Planar Imaging (EPI) [8].

The following theorem shows that random EPI along with
an excitation response with appropriate chord flatness is suf-
ficient to provide us with a measurement operator, h, that sat-
isfies the RIP on our signal model (proof available in [9]).

Theorem 1 (RIP for random EPI) Given an excitation re-
sponse cone R+B of dimension dB, whose chords have a flat-
ness λ, and a random EPI operator h : (R+B)N → CM×L.
With probability at least 1 − η, h is a restricted isometry on
(R+B)N − (R+B)N with constant δ as long as

λ−2 ≥ Cδ−2p2dB log(N/δη), (9)

for some constant C independent of p,N, dB, δ and η.

Specifically, if λ ∼ L−1/2 then we require L ∼ p2dB ex-
citation pulses. While we might hope to get L of the order of
pdB it appears that this is not possible, at least for a worst case
RIP analysis based on the flatness criterion alone. Indeed, in
the experimental section, we will provide evidence to suggest
that L ∼ p2 is indeed the scaling behavior that we empirically
observe.

4. EXPERIMENTS

4.1. Setting

In order to test the efficacy of our method, we performed a
set of simulations using an anatomical brain phantom adapted
from the anatomical brain phantom of [10], available at the
BrainWeb repository.4 The image contains 256 × 256 pixels

4http://brainweb.bic.mni.mcgill.ca/brainweb/
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Fig. 1. Left: λ−2/L as a function of L for some example of
response differences. Right: plot of the image sequence SER
(dB) against L/p2 for three different levels of undersampling
p = 16 (green), p = 32 (red), and p = 64 (blue).

and was restricted to 6 material components. The material
properties were chosen to be representative of the correct tis-
sue type [11] and were set so that there is not an exact match
to the sampling of the Bloch response manifold. The proton
densities were fixed to give little discrimination for individual
parameters.

For the excitation sequences, we use IR-SSFP sequences
[1] with random flip angles drawn from an i.i.d. Gaussian
distribution with standard deviation of 10 degrees. The repeti-
tion times were uniformly spaced at an interval of 10 ms. The
Bloch response manifold was sampled in a similar manner to
[1], however, we have only considered variation in T1 and T2
here, assuming that δf is equal to zero. This results in a dic-
tionary of size 3379×L, its range spanning the values for the
expected tissue types. For the Fourier subsampling, we use
the random EPI sampling scheme detailed in Section 3.2.2.

4.2. Results

To get a visual indication of the performance of the BLIP ap-
proach over the original MRF reconstruction, 3 different pa-
rameter estimates for L = 200 and p = 16 are given in Fig. 2.
The left hand column shows the ground truth parameter maps
while the middle row shows the MRF reconstruction (1 iter-
ation of the BLIP algorithm with µ = N/M ) and the right
hand column shows the BLIP estimates. While the main as-
pects of the parameter maps are visible in the MRF recon-
structions, there are still substantial aliasing artifacts. These
are most prominent in the density and T1 estimates. In con-
trast, the BLIP estimates are virtually distortion-free, indicat-
ing that good spatial parameter estimates can be obtained with
as little as 200 excitation pulses.

In the second experiment, we evaluate the image sequence
signal-to-error-ratio5 (SER) as a function of L and p. Recall
that the theory suggested that this performance might degrade
roughly as a function of L/p2. Fig. 1 shows a plot of the

5This is calculated as 20 log10(‖X − X̂‖F /‖X‖F ) for a target signal
X with the estimate X̂ .

Original Density MRF Density estimate BLIP Density estimate

Original T1 MRF T1 estimate BLIP T1 estimate

Original T2 MRF T2 estimate BLIP T2 estimate

Fig. 2. The top row shows the density maps: original (left),
MRF estimate (center) and BLIP estimate (right). The middle
and bottom rows shows the T1 and T2 maps respectively in
the same order.

image sequence SER as a function of L/p2 for three different
subsampling rates. We can see that the rapid growth of the
SER that we associate with successful recovery occurs in each
case at roughly the same value ofL/p2. This seems to suggest
that the predicted scaling behaviour for L and p in random
EPI to achieve RIP is of the right order.

5. CONCLUSIONS

We have presented a principled mathematical framework for
compressed quantitative MRI based around the recently pro-
posed technique of MRF [1]. The key elements of our ap-
proach have been: the characterization of the signal model
through the Bloch response manifold; the identification of
a provably good reconstruction algorithm based on iterative
projection; an excitation response condition based on a newly
introduced measure of flatness; and a random EPI scheme that
has the necessary RIP condition.

While the current work is targeted at a CS framework for
MRF, we believe that many elements of it should be more
broadly applicable. Specifically, the RIP condition for ran-
domized EPI may have applications in other MR imaging
strategies, and the characterization of excitation response in
terms of flatness could be a useful tool for the analysis of
other CS schemes involving some form of active sensing.

6952



6. REFERENCES

[1] D. Ma, V. Gulani, N. Seiberlich, K. Liu, J. L. Sunshine,
J. L. Duerk, and M. A. Griswold, “Magnetic resonance
fingerprinting,” Nature, vol. 145, pp. 187–192, 2013.

[2] T. Blumensath, “Sampling and reconstructing signals
from a union of linear subspaces,” IEEE Trans. Inf. The-
ory, vol. 57, no. 7, pp. 4660 – 4671, 2001.

[3] B.A. Hargreaves, S.S. Vasanawala, J.M. Pauly, and D.G.
Nishmura, “Characterization and reduction of the tran-
sient response in steady-state MR imaging,” Magn. Re-
son. Med., vol. 46, no. 1, pp. 149–158, 2001.

[4] C. Ganter, “Off-resonance effects in the transient re-
sponse of SSFP sequences,” Magn. Reson. Med., vol.
52, no. 2, pp. 368–375, 2004.

[5] T. Blumensath and M. E. Davies, “Iterative hard thresh-
olding for sparse approximation,” J. Fourier Anal. Appl.,
vol. 14, no. 5-6, pp. 629–654, 2008.

[6] T. Blumensath and M. E. Davies, “Iterative hard thresh-
olding for compressed sensing,” Appl. Comput. Har-
mon. Anal., vol. 27, no. 3, pp. 265–274, 2009.

[7] T. Blumensath and M. E. Davies, “Normalised itera-
tive hard thresholding; guaranteed stability and perfor-
mance,” IEEE J. Sel. Top. Signal Process., vol. 4, no. 2,
pp. 298–309, 2010.

[8] G.C. McKinnon, “Ultrafast interleaved gradient-echo-
planar imaging on a standard scanner,” Magn. Reson.
Med., vol. 30, no. 5, pp. 609–616, 1993.

[9] M. E. Davies, G. Puy, P. Vandergheynst, and Y. Wiaux,
“A compressed sensing framework for magnetic reso-
nance fingerprinting,” eprint arXiv:1312.2465, 2013.

[10] D.L. Collins, A.P. Zijdenbos, V. Kollokian, J.G. Sled,
N.J. Kabani, C.J. Holmes, and A.C. Evans, “Design and
construction of a realistic digital brain phantom,” IEEE
Trans. Med. Imaging, vol. 17, no. 3, pp. 463–468, 1998.

[11] J.P. Hornak, “The basics of MRI,” Available online at:
http://www.cis.rit.edu/htbooks/mri/.

6953


