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ABSTRACT

The development of social media has led to a burst of interest in

image-related metadata information, such as tags and geo-tags. Tags

are semantic keywords that are assigned to an image. Image tagging

enables the users of social media sharing platforms to annotate im-

ages, facilitating image search and content description. Despite the

volume of related research, issues such as accuracy or efficiency still

remain open problems. Here, a novel method for simultaneous im-

age tagging and geo-location prediction is proposed that is based on

hypergraph learning. The method is further improved by enforcing

group sparsity constraints. It fully exploits various types of infor-

mation, such as social, image-related metadata, or similarities based

on visual attributes. Experiments on a dataset crawled from Flickr
demonstrate F1 at 10 top ranked tags equal to 0.558 for image tag-

ging and cumulative geotagging prediction rate at 3 top ranks equal

to 83%.

Index Terms— Tagging, Recommender systems, Hypergraph,

Group Sparsity Optimization, Geo-coordinate prediction

1. INTRODUCTION

Nowadays, many social media sharing platforms have been devel-

oped and have gained significant popularity. Various websites like

Flickr1 or Picasa Web Album2 enable users to annotate images, de-

scribing their content according to the users’ point of view. The per-

ception of image content by humans may differ, for example, due to

cultural differences among the people. Image tagging aims at bridg-

ing this semantic gap, facilitating image search and categorization.

This task is further enhanced by exploiting another image-related

type of metadata information, the geo-tags. Modern mobile devices

like cameras or smart-phones have the ability to assign specific geo-

coordinates to an image by the time it is taken automatically. En-

riching the image with this valuable geographic information lever-

ages image search. Clearly, the exponential growth of the number of

uploaded images on the web exemplifies the need for efficient and

accurate tagging.

In the past, many works focused on image tagging, exploiting

the image content. S. L. Feng et al. [1] proposed an image and video

annotation model using the joint probability distribution of the possi-

ble annotations and the image feature vectors. The estimation of the

annotation probabilities was based on a multiple Bernoulli model,

while non-parametric kernel density estimates were used as image

features. X. Zhang et al. [2] proposed a probabilistic model based

1http://www.flickr.com
2http://picasaweb.google.com

on Markov Random Fields in order to capture the correlations be-

tween the different features. Information from multi-type interre-

lated objects was exploited in [3,4], using simple graph-based meth-

ods. Another image tagging method was presented in [5], where a

joint classification and regression model was used to perform image

annotation and geo-tag prediction, simultaneously. A different so-

lution to the geo-tag prediction problem was based on a data-driven

scene matching approach [6]. Hypergraph based approaches were

proposed for 3-D object retrieval [7] and for estimating the relevance

of user tagged images [8]. In [9], the spatial group sparse coding

was proposed for localizing tags to image regions, extending group

sparse coding with spatial correlations among the regions.

Here, a novel approach to simultaneous image tagging and geo-

location prediction within a hypergraph ranking framework is pro-

posed. Hypergraphs consist of a set of vertices made by concate-

nating different kinds of objects (images, users, social groups, geo-

tags, tags) and hyperedges linking these vertices [10–15]. This way,

the existing multi-link relations between the vertices are represented.

By fully exploiting the information distilled from social media, hy-

pergraphs are demonstrated to outperform existing methods that are

based on visual image features only or graph-based methods, which

model only the pairwise relations between the images [2,6]. Indeed,

the context revealed by user-ratings, such as tags and geo-tags, is

found to be more crucial than the content descriptive features [16].

Such findings by no means de-emphasize the role of content anal-

ysis, but undoubtedly underline the need for more powerful feature

analyzers. Here, it is demonstrated that the inclusion of user friend-

ship and user group relations on the top of image-related metadata

and image similarity increases the accuracy of both image tagging

and geo-location prediction. Building on hypergraph ranking, the

latter is enhanced by enforcing group sparsity constraints. This way,

the set of objects (i.e., vertices) is split into different object groups

(images, users, social groups, tags, geo-tags) and each object group

effect in image tagging and geo-location prediction is controlled

separately by assigning them different weights. Experiments on a

dataset crawled from Flickr demonstrate F1 at 10 top ranked tags

equal to 0.558 for image tagging and cumulative geotagging predic-

tion rate at 3 top ranks equal to 83%.

The remainder of this paper is organized as follows. In Section

2, the ranking on a hypergraph, enforcing group sparsity, is detailed.

In Section 3, the dataset is described and the hypergraph construc-

tion is explained. Experimental results are presented in Section 4,

demonstrating the effectiveness of the proposed method. Conclu-

sions are drawn and topics for future research are indicated in Sec-

tion 5.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6944



2. HYPERGRAPH RANKING WITH GROUP SPARSE

REGULARIZATION

In the following, | · | denotes set cardinality, ‖.‖2 is the ℓ2 norm

of a vector, and I is the identity matrix of compatible dimensions.

A hypergraph is a generalization of a graph having edges, which

connect more than two vertices. Let G(V,E,w) denote a hyper-

graph with set of vertices V and set of hyperedges E to which a

weight function w: E → R is assigned. The vertex set V is made

by concatenating sets of objects of different type (images, users, so-

cial groups, geo-tags, tags). These vertices and hyperedges form a

|V | × |E| incidence matrix with elements H(v, e) = 1 if v ∈ e
and 0 otherwise. Based on H, the vertex and hyperedge degrees are

defined as δ(v) =
∑

e∈E w(e)H(v, e) and δ(e) =
∑

v∈V H(v, e),
respectively. The following diagonal matrices are defined: the ver-

tex degree matrix Du of size |V |×|V |, the hyperedge degree matrix

De of size |E| × |E|, and the |E| × |E| matrix W containing the

hyperedge weights.

Let A = D
−1/2
u HWD−1

e HTD
−1/2
u . Then, L = I − A is

the positive semi-definite Laplacian matrix of the hypergraph. The

elements of A, A(u, v), indicate the relatedness between the objects

u and v. A real valued ranking vector f ∈ R
|V | that minimizes

Ω(f) = 1
2
fTLf yields a clustering of the hypergraph, where all

vertices with the same value in the ranking vector f are strongly

connected [17]. By including the ℓ2 regularization norm between

the ranking vector f and a query vector y ∈ R
|V |, a recommendation

problem can be solved [15]. That is, the function to be minimized is

expressed as

Ψ̃(f) = Ω(f) + ϑ ||f − y||22 (1)

where ϑ is a regularization parameter. The ranking vector f∗ =
argminf Ψ̃(f) is [15]:

f
∗ =

ϑ

1 + ϑ

(

I− 1

1 + ϑ
A
)−1

y. (2)

Hereafter, each vertex subset is referred to as object group in or-

der to avoid confusion with social groups. Indisputably, each ob-

ject group contributes differently to the ranking procedure. A Group

Lasso regularizing term is more appropriate than the ℓ2 norm in this

kind of problems [18]. The hypergraph vertices are split into S non-

overlapping object groups (images, users, social groups, geo-tags,

tags) and different weights γs, s = 1, 2, . . . , S are assigned to each

object group, yielding the following objective function to be mini-

mized:

Ψ(f) = Ω(f) + ϑ

S
∑

s=1

√

γs (f − y)TKs(f − y). (3)

In (3), ϑ is also a regularization parameter and Ks is the |V | ×
|V | diagonal matrix with elements equal to 1 for the vertices, which

belong to the s-th object group. The latter minimization problem is

expressed as:

f
∗ = argmin

f

Ψ(f). (4)

Let x = f − y. By introducing the auxiliary variable z = x, the

right-hand side of (4) is rewritten as:

argmin
x

1

2
(x+ y)TL(x+ y) + ϑ

S
∑

s=1

√

γs zTKsz

s.t. z = x. (5)

The solution of (5) can be obtained by minimizing the augmented

Lagrangian function

L(x, z,λ) = 1

2
(x+ y)TL(x+ y) + ϑ

S
∑

s=1

√

γszTKsz

+λ
T (z− x) +

µ

2
‖z− x‖22, (6)

where λ is the vector of the Lagrange multipliers, which is updated

Algorithm 1 Alternating Directions Method

1: Given xt, zt and λ
t.

2: Set tolerance ǫ and initialize µ0.

3: xt+1 ← argmin
x

L(x, zt,λt)

4: zt+1 ← argmin
z

L(xt+1, z,λt)

5: if ‖z− x‖22 > ǫ then

6: λ
t+1 ← λ

t + µt(zt+1 − xt+1)
7: µt+1 = min(1.1µt, 106)
8: else

9: return xt+1, zt+1.

10: f = xt+1 + y

11: end if

at each iteration and µ is a parameter regularizing the violation of

the constraint x = z. (6) can be solved by the Alternating Directions

Method [19], as shown in Algorithm 1. Solving for xt+1 in line 3
yields

x
t+1 = (L+ µ

t
I)−1(λt + µ

t
z
t − Ly). (7)

A careful look at (7) reveals that matrix inversion is not needed at

each iteration. Only one eigen-decomposition is needed. Indeed, let

Qt = L + µtI. Then, Q−1
t = 1

µt−µt−1

[

I+ 1
µt−µt−1Qt−1

]−1

.

Q0 = L+µ0I is a symmetric matrix. Therefore, it is diagonalizable:

Q0 = UΛ0U
T , where UUT = UTU = I. It can be easily

derived that Q−1
1 = U

[

(µ1 − µ0)I+Λ0

]−1
UT and in general

Q
−1
t = U

[

(µt − µ
0)I+Λ0

]−1
U

T
. (8)

The minimization problem described in line 4 of Algorithm 1 is ex-

pressed as

min
z

µ
t

{

ϑ

µt

S
∑

s=1

√
γs
√

zTKsz+
1

2
‖z− (xt+1 − 1

µt
λ

t)‖22
}

. (9)

By applying the soft-thresholding operator [20], we obtain

zj =
rj

||rs||2
max

(

0, ||rs||2 − ϑµ
t 1√

γs

)

(10)

where rj = xt+1
j − 1

µt λ
t
j , s is the object group where the j-th

element belongs, and rs denotes the segment of r corresponding to

the s-th object group.

3. DATASET DESCRIPTION AND HYPERGRAPH

CONSTRUCTION

3.1. Dataset description

For evaluation purposes, an image dataset was collected from

Flickr. It contains both indoor and outdoor medium sized photos

of popular Greek landmarks, various city scenes, and landscapes.

Using FlickrApi3, a large set of “geotagged” images was down-

3http://www.flickr.com/services/api
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Table 1. Dataset objects, notations, and counts.

Object Notation Count

Images Im 1292
Users U 440
User Groups Gr 1644
Geo-tags Geo 125
Tags Ta 2366

loaded along with valuable information related to them (id, title,

owner, latitude, longitude, tags, image views). Then, the dataset

was filtered based on image views (times that the specific image

has been seen in Flickr) and owner’s uploading statistics. At this

point, it was assumed that images with many views normally depict

worth seeing landmarks and owners (users) with many uploaded

images were active ones, possessing many social relations (friends,

social groups). The owners of these images were the users in the

dataset. Then, corresponding social information (friends, social

groups) was crawled and only the groups that had at least 5 owners

from the dataset as members were kept. The specific cardinalities

are summarized in Table 1.

In order to form a proper set of tags, all characters were con-

verted to lower case, unreadable symbols and redundant information

were removed. Next, a vocabulary of unique words was generated

along with their frequencies. Then, terms with frequency 1 or 2 were

removed from the set of tags and the vocabulary. Finally, spelling

mistakes were corrected and any morphological variations merged

using the Edit Distance [21].

Geo-tags were clustered into 125 different clusters using hierar-

chical clustering, having computed pairwise distances according to

the “Haversine formula”4.

3.2. Hypergraph construction

The vertex set is defined as V = Im∪U ∪Gr∪Geo∪Ta. The hy-

pergraph, H is formed concatenating the 6 hyperedge sets indicated

as columns in Table 2. H has a size of 5867 × 30924 elements. In

the following, the weights of the hyperedge sets E(1)–E(5) are set

equal to one. The dataset has captured 2276 friendship relations and

19127 tagging ones.

E(1) represents a pairwise friendship relation between users.

The incidence matrix of the hypergraph UE(1) has a size of 440 ×
2276 elements.

E(2) represents a user group. It contains all the vertices of the

corresponding users as well as the ones corresponding to the user

group. The incidence matrix of the hypergraph UE(2) − GrE(2)

has a size of 2084× 1644 elements.

E(3) contains a user and an uploaded image, representing a user-

image possession relation. Each image has only one owner. The

incidence matrix of the hypergraph UE(3) − ImE(3) has a size of

1732× 1292 elements.

E(4) captures a geo-location relation. This hyperedge set con-

tains triplets of Im, U and Geo. The incidence matrix of the hy-

pergraph ImE(4) − UE(4) − GeoE(4) has a size of 1857 × 125
elements.

E(5) also contains triplets, Im, U and Ta. Each hyperedge rep-

resents a tagging relation. The incidence matrix of the hypergraph

ImE(5) − UE(5) − TaE(5) has a size of 4098× 19127 elements.

4http://www.movable-type.co.uk/scripts/latlong.

html

Table 2. The structure of the hypergraph incidence matrix H and its

sub-matrices.

E(1) E(2) E(3) E(4) E(5) E(6)

0 0 ImE(3) ImE(4) ImE(5) ImE(6)

UE(1) UE(2) UE(3) UE(4) UE(5)
0

0 GrE(2)
0 0 0 0

0 0 0 GeoE(4)
0 0

0 0 0 0 TaE(5)
0

E(6) contains pairs of vertices, which represent two images. The

weight w(e
(6)
ij ) is set as the similarity between images i and j nor-

malized to eliminate the bias: w(e
(6)
ij )′ =

w(e
(6)
ij

)

max(w(e
(6)
ij

))
. In order

to form this part of the hypergraph, both global and local features

were used. Firstly, the 100 nearest neighbors to each image were

identified using the GIST descriptors [22] and they were reduced to

the 5 most similar images to the reference image, by using scale-

invariant feature transform (SIFT) [23]. The incidence matrix of the

hypergraph ImE(6) has a size of 1292× 6460.

The query vector y is initialized by setting the entry correspond-

ing to the reference image im and its owner u to 1. The tags ta con-

nected to this image are set to A(im, ta). The objects corresponding

to gr and geo associated to the image owner u are set to A(u, gr)
and A(u, geo), respectively. The query vector y has a length of 5867
elements.

The ranking vector f∗ is derived by solving either (2) or (4),

having set the query vector y, the regularization parameter ϑ, and

the group of objects weights γs in case of (4), as detailed in Section

4. It has the same size and structure as y. The values corresponding

to tags are used for image tagging with the top ranked tags being

recommended for the reference image. The values corresponding to

geo are used for geo-location prediction with only the 3 top ranked

geo-locations (i.e., geo-clusters) being recommended for the refer-

ence image, consecutively.

4. EXPERIMENTS

The averaged Recall-Precision and F1 measure are used as figures of

merit. Precision is defined as the number of correctly recommended

tags divided by the number of all recommended tags. Recall is de-

fined as the number of correctly recommended tags divided by the

number of all tags the user has actually set. The F1 measure is the

weighted harmonic mean of precision and recall, which measures

the effectiveness of recommendation when treating precision and re-

call as equally important. The ranking obtained by (2) is referred to

as Image Tagging on Hypergraph (ITH), while that obtained by (4)

is coined as Query Group Sparse Optimization (QGSO). The geo-

location prediction is referred to as GPR.

For evaluation purposes, a test set containing the 25% of the

tags and a training set containing the remaining 75% are defined.

During testing, the tags contained in the test set were not included

in the training procedure. That is, the associated elements to the test

image are set equal to zero in A and y. The relations between test

images im and geo-locations (i.e., geo-clusters geo) are set also to

0. The results of the (ITH) are demonstrated in Fig. 1, in which

the averaged Recall-Precision curves are plotted by averaging the

Recall-Precision curves over 1186 images with at least 4 tags. To

calculate the recall and precision, the 15 top ranked tags are being
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recommended to any test image. For the GPR, only the 3 top ranked

elements are taken from the part of the f vector associated to the

geo-locations. In Fig. 2, the results for the GPR are presented.

By enforcing group sparsity in the ranking problem, the perfor-

mance is improved significantly, as shown in Fig. 1. The weights for

the 5 different object groups (images, users, user groups, geo-tags

and tags) were set to 0.9, 0.9, 0.6, 0.2, and 0.2, respectively. This

choice was made empirically. The typical values of µ0, ǫ, and ϑ are

10−6, 10−8, and 2, respectively.

In Table 3, the averaged F1 measure is listed for the ITH and the

QGSO, corresponding to 5 different ranking positions. It is evident

that both methods achieve an encouraging F1 measure. It is clearly

indicated that the QGSO outperforms the ITH.

In Table 4, the rate of correct geo-location prediction is detailed

for both the ITH and the QGSO, corresponding to the 3 top ranked

elements. Taking strictly only the 1-st element, a correct predic-

tion rate equal to 56% is obtained with the ITH and by taking the

3 top ranked elements, the rate reaches 81%. The QGSO method

demonstrates higher rates than the ITH by 2%. These results are

further compared with those obtained by exploiting geographical in-

formation deduced from the tags. Greek geo-names were collected

from the GeoNames geographical database5 along with their geo-

coordinates. A geo-location prediction was made for each image

having tags matching the geo-names. The distance between the im-

age geo-coordinates, treated as ground truth, and the ones associated

to the geo-name was computed by using “Haversine formula”. Pre-

dictions whose distances fall below a threshold of 500 m were con-

sidered as correct. Let us call, the just described naive approach as

GNPR. Fig.2 depicts the geo-location prediction rates achieved by

the ITH, the QGSO, and the GNPR. Clearly, the QGSO yields the

highest rate. GNPR yields a correct prediction rate equal to 38%.
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Fig. 1. Averaged Recall-Precision curves for the ITH and the QGSO.

Table 3. F1 measure for the ITH and the QGSO at ranking positions

1, 2, 5, 10, and 15.

F1@1 F1@2 F1@5 F1@10 F1@15
ITH 0.312 0.457 0.530 0.445 0.362
QGSO 0.400 0.627 0.705 0.558 0.430

5http://www.geonames.org

Table 4. GPR (in %) for the ITH and the QGSO at 3 ranking posi-

tions and cumulative rank score.

1st rank 2nd rank 3rd rank cumulative

ITH 56% 17% 8% 81%
QGSO 57% 18% 8% 83%

5. CONCLUSION AND FUTURE WORK

In this paper, a novel and efficient method of simultaneous image

tagging and geo-location prediction has been proposed. It fully ex-

ploits the image content, the context, and the social media informa-

tion. Thanks to hypergraph learning, image tagging and geo-location

prediction have been addressed and further improved by enforcing

group sparsity constraints. The merits of the proposed method were

demonstrated experimentally on a collection of Greek landmark im-

ages. The method can also accommodate tagging for any multimedia

(e.g., music, video) or even the fusion between them. Applications,

such as travel guideline systems based on images and their geo-

graphic coordinates or query-based systems recommending touristic

destinations, can benefit from the proposed method.
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