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ABSTRACT

While bag-of-features (BOF) models have been widely
applied for addressing image retrieval problems, the result-
ing performance is typically limited due to its disregard of
spatial information of local image descriptors (and the asso-
ciated visual words). In this paper, we present a novel spatial
pooling scheme, called extended bag-of-features (EBOF), for
solving the above task. Besides improving image represen-
tation capability, the incorporation of the our EBOF model
with a proposed circular-correlation based similarity measure
allows us to perform translation, rotation, and scale-invariant
image retrieval. We conduct experiments on two benchmark
image datasets, and the performance confirms the effective-
ness and robustness of our proposed approach.

Index Terms— Image retrieval, bag-of-features

1. INTRODUCTION

The amount of online image data is exploding in the past
decade due to the rapid growth of Internet users. Since most
of such data are not properly tagged when uploading, how to
search or retrieve the images of interest is still a very chal-
lenging task. This is the reason why content-based image re-
trieval (CBIR) attracts the attention of researchers in related
fields. The use of image descriptors like SIFT [1] are popu-
lar in terms of describing the visual appearances of images.
Based on the extracted SIFT descriptors, the use of the bag-
of-features (BOF) model [2] provides a robust image repre-
sentation, which is a histogram indicating the numbers of oc-
currences of each learned visual word.

Although the use of BOF models has been shown to be
very effective [2, 3, 4], it discards the spatial information of
the visual words (or the associated image descriptors) when
describing each image. To address this problem, Lazebnik et
al. [5] proposed a spatial pyramid matching (SPM) and char-
acterized each image by concatenating multiple BOF mod-
els at different positions and scales. Recently, Cao et al. [6]
chose to pool the local image descriptors from each image
in a particular spatial order. Instead of explicitly dividing an
image into different regions for pooling, the co-occurrence of
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Fig. 1. Advantages of our proposed spatial pooling scheme for
translation, rotation, and scale-invariant image retrieval.

visual words were also utilized to improve the image retrieval
or categorization tasks [7, 8].

In this paper, we present a novel pooling scheme for BOF,
named extended bag-of-features (EBOF). While the goal of
EBOF is to better represent an image by preserving the spatial
information of visual words, the integration of EBOF with our
proposed circular-correlation based algorithm further allows
us to perform translation, rotation, and scale-invariant image
retrieval. It is worth noting that, when performing image re-
trieval, our method does not need to assume self-similarity
or to calculate the co-occurrences of visual words explicitly.
Later in our experiments, we will verify the effectiveness and
robustness of our proposed method.

2. OUR PROPOSED METHOD

2.1. A Brief Review of BOF, SPM, and SBOF

To represent an image, the bag-of-features (BOF) model [2]
quantizes image descriptors such as SIFT [1] into distinct vi-
sual words. As a histogram-based representation, each at-
tribute of BOF indicate the number of occurrences of each
word in an image. While BOF has been applied to image re-
trieval or classification, it discards the spatial information of
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Fig. 2. An example of our extended bag-of-features (EBOF) model
Hp. (a) Original image with EBOF centered at p, (b) a scaled version
of (a), and (c) a rotated version of (a). Note that each colored point
denotes a local image descriptor with a corresponding visual word.

visual words and thus limits the representation capability.
To address the above problem, spatial pyramid matching

(SPM) [5] extends BOF by partitioning an image into sev-
eral grids at different scales. It pools the BOF models from
each grid and concatenates them as a final feature vector. Al-
though the spatial order of the visual words is preserved by
SPM, it cannot be easily extended to retrieval or classification
problems in which the object of interest exhibits translation,
rotation, or scale variations in an image.

Recently proposed in [6], spatial-bag-of-features (SBOF)
pools BOF models for each visual word from different des-
ignated regions within an image, so that translation, rotation,
and scale-invariance can be possibly achieved. Since SBOF
only preserves the spatial information of each word when de-
riving their feature representation, their disregard of visual
word co-occurrences during their pooling process would limit
their performance (as verified later by our experiments).

2.2. Extended Bag-of-Features

Unlike SPM which pools and concatenates BOF models from
different grids of an image as an one-dimensional feature vec-
tor, we choose to uniformly divide an image into L fan-shaped
sub-images (centered at p), as shown in Figure 2(a). For a
codebook with K codewords, we calculate our extended bag-
of-features (EBOF) model at center p of an image as

Hp = [h{p,1},h{p,2}, ...,h{p,L}], (1)

where h{p,i} ∈ RK×1 is the BOF of the ith sub-image, and
Hp is of size K × L. Once this EBOF is constructed, we
apply a 2D Gaussian weighting function (centered at p) to
suppress the contributions of visual words farther away from
p. In our work, we set the standard deviations of both dimen-
sions of this Gaussian function as half of the longer length
of the image. Finally, we normalize this calculated EBOF by
Hp/‖Hp‖1 for later correlation and retrieval purposes.

Comparing Figures 2(a) and (b), we see that a scale
change will not affect the EBOF model, and thus scale in-

variance can be achieved. As for rotation variations as shown
in Figure 2(c), the resulting EBOF will be a shifted version
(in column) of that of the original image. In addition to scale
and rotation changes, we also need to deal with translation
variations. In our work, we consider that the object of interest
is located at the center of the query image Q when calculating
its EBOF HQ as the image feature. Thus, the subscript p is
ignored in HQ for simplicity. For the target images to be
retrieved, we uniformly divide each image I into 5× 5 = 25
grids, and use the center p of each grid to extract the EBOF
model for deriving different HI

p (see discussions in Section
2.3.2 for this choice).

Once the EBOF models are extracted from both query and
target images, we perform image retrieval based on the max-
imum similarity score between HQ and each HI

p for transla-
tion, rotation, and scale invariance, which will be detailed in
the next subsection.

2.3. Image Retrieval with EBOF

2.3.1. Circular-correlation based image retrieval

We now discuss how we utilize the proposed EBOF model in
(1) for addressing the retrieval task. Given a query image Q
and a target image I in the database, we need to determine the
similarity score between their EBOF models HQ and HI

p. Re-
call that we only construct one EBOF for the query (centered
at the query Q), and we have 25 EBOFs for I at different cen-
ters. We now determine S{Q,I}

p = (HQ ⊗ HI
p) as a K-by-L

correlation matrix, and each row rk of S{Q,I}
p is calculated by

rk[l] =
L∑

m=1

HQ[k,m] HI
p[k,mod(l +m− 1, L)], (2)

where l = 1, 2, ..., L denotes the number of rotation angles.
From (2), one can see that we perform circular correlation
between the kth rows of the EBOF models HQ and HI

p, and
thus the resulting vector rk indicates the similarity of the kth
visual word between these two images across different rota-
tion angles. Once all rows of S{Q,I}

p are obtained, we have
each column of S{Q,I}

p as the correlation response (i.e., sim-
ilarity) between the BOF models between images Q and I
at a specific rotation angle. As a result, we have S{Q,I}

p =

[s1, s2, ..., sL] = [rT1 ; rT2 ; ...; rTK ], where sl ∈ RK×1 and rk ∈
RL×1. As depicted in Figure 3, each column sl represents the
correlation between Q and I at a particular angle, while each
row rk denotes the correlation response of a particular visual
word across different rotation angles.

To assess which rotation angle is most likely to be the
match between Q and the image I , we apply the cosine simi-
larity as the metric for determining the normalized similarity
score between each column of S{Q,I}

p and the autocorrelation
output vector of the query Q. Note that the autocorrelation
output vector of Q is calculated as a = diag(HQ · (HQ)T ), in
which each entry indicates the energy of the BOF model for
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Fig. 3. Illustration of image retrieval using our proposed EBOF models. Note that each row in S{Q,I}
p indicates the correlation response of

a visual word between images Q and I across different rotation angles, while each column represents their correlation at a specific rotation
angle. Sim(HQ,HI

p) denotes the normalized similarity between Q and I at a particular center p.

the corresponding sub-image. As depicted in Figure 3, this
normalized similarity Sim(HQ,HI

p) between images Q and
I across L different rotation angles is calculated as:

Sim(HQ,HI
p) = [cos(a, s1), cos(a, s2), ..., cos(a, sL)]. (3)

By identifying the largest value in Sim(HQ,HI
p), the ro-

tation angle at which Q and I are most similar to each
other can be determined. We then repeat the above cor-
relation process for HI

p at different centers p for trans-
lation invariance. The maximum output across different
Sim(HQ,HI

p) is the final similarity score for retrieval, i.e.,
Score(Q, I) = maxPp=1 {max {Sim(HQ,HI

p)}}.

2.3.2. Translation, rotation, and scale invariance

To deal with translation variations when performing image
retrieval, we consider that the object of interest is presented
at the center of the query image Q without loss of general-
ity. Thus, only one EBOF model HQ is constructed (i.e., the
one centered at Q). As for the image I in the database to
be retrieved, we uniformly divide I into 5 × 5 = 25 grids
and consider p as the centers of each grid when extracting the
corresponding EBOF models. The EBOF models at 25 dif-
ferent locations in I are calculated for representing this im-
age. We perform the above circular-correlation based proce-
dure and consider the maximum normalized similarity output
across 25 different Sim(HQ,HI

p) as the final retrieval score.
If p is located at/near the center of the object of interest in
I , the corresponding EBOF model at a particular rotation an-
gle would produce the highest similarity score. This is how
translation-invariant image retrieval is achieved.

To verify the above setting is sufficient for translation-
invariant retrieval performance, Figure 4 plots the mean av-
erage precision (MAP) scores of the ETHZ Toys Dataset [9]
using different numbers of grids (from 1×1 up to 9×9). From
this figure, it can be seen that the use of 5 × 5 = 25 grids is
sufficient for producing improved retrieval results (compared
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Fig. 4. MAP of the ETHZ Toys Dataset with different numbers of
grids of an image (from 1× 1 = 1 up to 9× 9 = 81) for translation
invariance.

to 1 × 1 without shift invariance), and uses of larger num-
bers of grids are not necessary. This because that our retrieval
algorithm is based on the maximum correlation score. Thus,
our choice is preferable for producing satisfactory translation-
invariant results.

As discussed earlier in Section 2.2, our proposed EBOF
model is robust to scale variations when describing an im-
age. Since rotation variations would produce shifted EBOF
models Hp in columns, we calculate the similarity between
the resulting EBOF models for rotation invariance. By iden-
tifying the rotation angle of I which results in the associ-
ated rotated/shifted version to be most similar to Q, rotation-
invariant image retrieval can be achieved. Similar to the above
tests/verifcations for shift invariance, we also vary the num-
ber L of fan-shaped sub-images and evaluate the associated
performance of rotation invariance on the ETHZ dataset. We
also observed that L from 6 to 10 achieved comparable im-
proved results as those with smaller L values. Therefore, our
choice of L = 8 is sufficient for producing rotation-invariant
results.

3. EXPERIMENTS

3.1. Datasets

We first consider the Oxford 5K dataset [10], which contains
5026 images of the landmarks in Oxford. Each image of Ox-
ford 5K contains around 3000 SIFT interest points, and the
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Fig. 5. Example retrieval results on (a) Oxford 5K and (b) ETHZ Toys datasets. Each row shows top retrieved outputs produced by different
methods, and the relevant ones are circled in red.

longer dimension of these images is about 1024 pixel. This
dataset provides 55 queries and the ground truth for all im-
ages to be retrieved. We resize each query image so that its
longer side is 500 pixels. For computation efficiency, we set
codebook size as K = 1000.

Since the landmarks in the Oxford 5K dataset typically do
not exhibit significant rotation variations, we further consider
the ETHZ Toys dataset [9], which contains 40 query images
for 9 different objects and a total of 23 images to be retrieved.
The test images are heavily cluttered, so the toy objects might
be partially occluded in addition to translation, rotation, or
scale variations which make the retrieval task more challeng-
ing. In our experiments, we resize the query image so that the
longer side is 100-pixel wide, and we also the codebook size
K = 1000.

3.2. Discussions

We compare our method with three BOF-based approaches:
the standard BOF [3], SPM [5], and SBOF [6]. For SPM,
we divide each image into 2 × 2 grids and thus a total of
1 + 2 × 2 = 5 BOF will be concatenated as features. As for
SBOF, we consider the number of fan-shaped sub-images as
L = 8 (as we do). The number of angles for performing lin-
ear projections is 4 for SBOF, and we also consider the same
25 centers p for its circular projection. We use the same code-
book with size K = 1000 for all approaches to be evaluated.
It is worth noting that we do not perform feature selection for
SBOF (as [6] did). This is because we assume that no labeled
training data is available when performing retrieval (which is
practical for real-world scenarios).

When performing retrieval, we consider the Euclidean
distance as the similarity metric for BOF and SPM models.
As for SBOF, we apply cosine similarity as suggested in [6].
Example retrieval results for the two datasets are shown in
Figure 5. From the table shown in Figure 6(a), it is clear
that we achieved the highest mean average precision (MAP)
scores for both datasets. To better visualize the differences,
we further plot the Receiver Operating Characteristic (ROC)
curves for the Oxford 5K dataset in Figure 6(b), which shows

Methods
Oxford 

5K
ETHZ 
Toys

BOF [3] 0.055 0.232

SPM [5] 0.146 0.243

SBOF [6] 0.030 0.234

Ours 0.167 0.333

(a) (b)

[6]
[5]
[3]

Fig. 6. Performance comparisons. (a) MAP scores for Oxford 5K
and ETHZ Toys datasets, (b) ROC for the Oxford 5K dataset.

that our method outperformed other approaches. We note
that, since only a codebook with 1000 words was considered,
the reported MAP values were not comparable as those using
1M words in [6]. However, it is clear that our approach was
able to produce better retrieval results and achieved improved
MAP scores when comparing to BOF-based methods with
the same codebook. We also note that, the runtime estimate
of our method is around 0.35 seconds per image on a PC
with Intel Core 2 Duo CPU 2.66 GHz and 4G RAM (pro-
grammed in Matlab). From the above empirical results, the
effectiveness of our proposed image retrieval framework can
be verified, and our meethod is shown to be preferable when
translation, rotation, and scale variations are presented.

4. CONCLUSION

We proposed an extended bag-of-features (EBOF) model
for image retrieval. Our EBOF is able to exploit the spatial
information of visual words presented in images. Together
with a circular-correlation based similarity measure, the use
of EBOF has been shown to achieve translation, rotation, and
scale-invariant image retrieval. Unlike prior retrieval works,
our approach does not require assumption of self-similarity
or the calculation of visual word co-occurrences. Experi-
ments on two benchmark datasets verified the effectiveness
and robustness of our proposed method.
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