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ABSTRACT

The mismatching problem between the training and test
speech corpora hinders the practical use of the machine-
learning-based voice activity detection (VAD). In this paper,
we try to address this problem by the unsupervised domain
adaptation techniques, which try to find a shared feature
subspace between the mismatching corpora. The denoising
deep neural network is used as the learning machine. Three
domain adaptation techniques are used for analysis. Experi-
mental results show that the unsupervised domain adaptation
technique is promising to the mismatching problem of VAD.

Index Terms— deep learning, domain adaptation, feature
learning, transfer learning, voice activity detection.

1. INTRODUCTION

Voice activity detectors (VADs) aim to distinguish noisy
speech from the pure noise signals. They are important fron-
tends of modern speech recognition systems [1–4] and speech
signal processing systems. Recently, the machine-learning-
based VAD [5–14] becomes a promising approach in that it
not only can be integrated to the speech recognition systems
naturally but also can fuse the advantages of multiple features
much better than traditional VADs. However, the machine-
learning-based VAD is still far from its practical use. One
significant problem is that we are not sure about whether the
VAD model trained in one noise scenario is still powerful in
a different test noise scenario.

In this paper, we deal with the aforementioned problem
by a novel learning method – unsupervised domain adap-
tation. Generally, unsupervised domain adaptation trains a
model with one or multiple labeled source corpora and one
unlabeled target corpus, and tests the model on a corpus that
is generated from the same underlying distribution as the un-
labeled target corpus. See [15] for an excellent survey of the
unsupervised domain adaptation. This method is a promising
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way towards the practical use of the machine-learning-based
VAD in that the labeled source corpora are rare and manually
expensive, but the model is easily retrained with the extensive
power of modern parallel computing systems whenever we
encounter new types of noises.

The key idea of our domain adaptation techniques is
to extract a low-dimensional feature representation that is
shared by the source corpora and the target corpus from mul-
tiple acoustic features, by the denoising deep neural networks
(DDNN) [14]. Our objective is that the DDNN can generalize
well on the test set that has the same noise type as the target
corpus in the training set. The main contributions of this
paper are summarized as follows:

1. Towards the mismatching problem of the machine-
learning-based VAD. Empirical results show that (i) when
DDNN is used as the learning machine, the performance of
the proposed methods is better than that without the proposed
methods. (ii) For a broad comparison, when the distributions
of the source noise and target noise are somewhat similar, the
proposed methods are more powerful than several referenced
VADs. (iii) When the distribution of the source noise is quite
dissimilar with the distribution of the target noise, we failed
to achieve a good generalization performance on the test set.

2. A useful empirical comparison of three unsuper-
vised domain adaptation schemes. We have proposed three
domain adaptations. Empirical results suggest that we would
better pretrain the deep neural networks in an unsupervised
manner with both the source corpus and the target corpus to-
gether, and the data for all layers’ pretraining should be con-
sistent without interference.

The remainder of the paper is organized as follows. In
Section 2, we present three unsupervised domain adaptation
schemes. In Section 3, we present the related work. In Sec-
tion 4, we conduct an extensive experimental comparison. In
Section 5, we conclude this paper with some future work.

2. DOMAIN ADAPTATION FOR VAD

Suppose the training set consists of a labeled source cor-

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6914



Scheme 1 .
1: Pretrain all layers of DDNN with only the unlabeled tar-

get corpus X (t) layer-wisely.
2: Fine-tune the pretrained DDNN with only the labeled

source corpus, i.e. X (s) × Y(s).

Scheme 2 .
1: Take the labeled source corpus X (s) and the unlabeled

target corpus X (t) together as a large corpus, and pretrain
all layers of DDNN layer-wisely with the large corpus.

2: Fine-tune the pretrained DDNN with only X (s) × Y(s).

pus X (s)×Y(s) and an unlabeled target corpus X (t), where X
represents the acoustic feature corpus and Y represents the set
of the manual labels. The corpora X (s) and X (t) are sampled
from different noise scenarios. Domain adaptation scheme
aims to find a mapping function ϕ(·) that minimizes the dif-
ference between ϕ

(
X (s)

)
and ϕ

(
X (t)

)
.

DDNN [14] is used as the learning machine. The key idea
of DDNN is to first minimize the reconstruction cross-entropy
loss between the noisy speech signal and its corresponding
clean speech signal in an unsupervised greedy layer-wise pre-
training way, and then fine-tune the entire deep neural net-
work by minimizing the classification cross-entropy loss be-
tween the noisy speech signal and its manual labels.

The core idea of the unsupervised domain adaptation is
to first pretrain DDNN in different unsupervised ways and
fine-tune DDNN with the labeled source corpus, i.e. X (s) ×
Y(s). In this paper, we present three unsupervised pretraining
schemes, which are listed in Schemes 1, 2, and 3 respectively.

Scheme 1 only uses the unlabeled target corpus X (t) to
pretrain DDNN. It is supposed to be computationally efficient
when X (t) is not very large.

Scheme 2 uses both X (s) and X (t) for pretraining DDNN,
which can learn a good feature representation shared by X (s)

and X (t). Particularly, when X (t) is rare, X (s) can play a
sufficient supplementary role to X (t). Hence, the network is
desired to perform gently well on the test set.

Scheme 3 is designed as a compromise between Scheme 1
and Scheme 2. Specifically, because we inject the supplemen-
tary effect of X (s) merely into the highest layer of DDNN,
we might not only transfer the source knowledge to the target
domain but also save a lot of training time. Scheme 3 con-
tains two sub-schemes, which is denoted as Scheme 3(t) and
Scheme 3(s) respectively. Scheme 3(t) is a scheme that the
lowest L−1 layers are pretrained by X (t) only, while Scheme
3(s) is a scheme that the lowest L− 1 layers are pretrained by
X (s) only.

Note that we can use multiple source corpora and multi-
ple target corpora together to train the model freely. But in
this paper, we only discuss the empirical performance with
one source corpus and one target corpus, leaving the multiple
source domain adaptation problem as a future work.

Scheme 3 .
Input: The desired depth of DDNN, denoted as L, (i.e. the

number of the hidden layers).
1: Source DDNN pretraining: Pretrain a DDNN model

with a depth of L − 1 using only X (s) as the input.

The pretrained source-DDNN is denoted as
{
W

(s)
l

}L−1

l=1
.

/*Note: this model needs to be trained only once, and
used repeatedly for different target corpus.*/

2: Target DDNN pretraining: Pretrain another DDNN
with a depth of L − 1 using only X (t) as the input. The

pretrained target DDNN is denoted as
{
W

(t)
l

}L−1

l=1
.

3: Hybrid pretraining of the top layer: Group the out-
put features of the two DDNN models together to a large
training set, and pretrain the L-th layer of DDNN with
the large set. The pretrained model is denoted as W(t)

L .
4: /* The following are two model choices.*/
5: if Scheme 3(t) then
6: Fine-tune the pretrained model{{

W
(t)
l

}L−1

l=1
,W

(t)
L

}
with only X (s) × Y(s).

7: else if Scheme 3(s) then
8: Fine-tune the pretrained model{{

W
(s)
l

}L−1

l=1
,W

(t)
L

}
with only X (s) × Y(s).

9: end if

3. RELATED WORK

The distribution difference between different noise scenar-
ios has been mentioned in traditional VADs. For example,
in [16], Chang et al. used different statistical models for
modeling the speech and noise distributions in different noise
scenarios. Another related topic is the online learning meth-
ods [17]. they update the model parameters according to the
historical domain information of the speech signals. Tradi-
tional statistical-model-based VADs [16] can also be regarded
as unsupervised online learning methods. But to our knowl-
edge, how to combine multiple features effectively is still an
open problem in the online learning methods. On the other
side, although our domain-adaptation-based VADs work in
batch mode, it can combine multiple features effectively and
also does not require heavy manual labeling.

The proposed methods are strongly related to the machine-
learning-based speech separation and enhancement tech-
niques [18–20]. The authors have used a large amount of
noise scenarios to train the models and tested the models in
the noise scenarios that have never appeared in the training
set. Finally, they achieved significant performance improve-
ment on the unseen noise scenarios. However, to our knowl-
edge, the unsupervised domain adaptation techniques have
not been considered in these works.
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Table 1. Features and their attributes. The index of each
feature is the window length of the feature [22].

ID Feature Dimension ID Feature Dimension
1 Pitch 1 7 MFCC16 20

2 DFT 16 8 LPC 12

3 DFT8 16 9 RASTA-PLP 17

4 DFT16 16 10 AMS 135

5 MFCC 20 Total 273

6 MFCC8 20

4. EXPERIMENTS

4.1. Experimental Settings

Seven noisy test sets of AURORA2 [21] is used for perfor-
mance analysis. The signal-to-noise ratio (SNR) level of the
audio signals is set to 5 dB. Each test corpus of AURORA2
contains 1001 utterances, which are split randomly into three
groups for training, developing and test respectively. Each
training set and development set consist of 300 utterances re-
spectively, totally about 500 seconds long. Each test set con-
sists of 401 utterances.

The sampling rate is 8kHz. We set the frame length to
25ms long with a frame-shift of 10ms. We extract 10 acoustic
features from each observation. The detailed information of
the features is listed in Table 1. All features are normalized
into the range of [0, 1] in dimension.

To simulate the real-world domain adaptation task, we
take the training sets of the Street and Subway noise scenar-
ios as two source corpora. For each source corpus, we form 6
domain adaptation tasks by randomly extracting a 30-second
audio segment from the training set of each noise type of AU-
RORA2, except that of the source corpus. For each domain
adaptation task, the development set of the source noise sce-
nario is used for model selection. We run each domain adap-
tation task 5 times and report the average accuracies. Note
that the size of the target corpus is much smaller than the size
of the source corpus.

The parameters are set as follows. Each deep model has
three hidden layers. Only the best performance over all lay-
ers is reported. The numbers of the hidden units are set to
[54, 7, 7] respectively. The learning rate of the unsupervised
pretraining is set to 0.004. The maximum epoch of the un-
supervised pretraining is set to 200. The learning rate of the
supervised fune-tuning is set to 0.005. The maximum epoch
of the supervised fune-tuning is set to 130. The batch mode
training is adopted. Each batch contains 512 observations.

To evaluate the effectiveness of the proposed domain
adaptation schemes, we give the empirical lower bound and
upper bound of the schemes. The Lower Bound is ob-
tained by training DDNN with only the training set of the
source noise scenario and testing it on various target noise
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Fig. 1. Hinton diagram of the feature distributions in dif-
ferent noise scenarios. The identifications “1” to “7” rep-
resent babble, car, restaurant, street, airport, train, and
subway respectively. Each grid of the Hinton diagram mea-
sures the distribution similarity of the features of the rele-
vant two scenarios. The bigger the grid is, the more simi-
lar the two distributions are. The similarity is calculated by
exp

(
−∥c(s) − c(t)∥2/2

)
where c represents the feature cen-

troid.

environments. If the performance of the proposed domain
adaptation schemes is worse than Lower Bound, it means that
the schemes fail. The Upper Bound is obtained by train-
ing DDNN with the training set of the target noise scenario
and testing the model on the test set of the same target en-
vironment. We also compare with the G.729B VAD [23],
ETSI advanced frontend via Wiener filter [24], ETSI ad-
vanced frontend via frame dropping [24], Sohn VAD [25],
Ramirez05 VAD [22], Ramirez07 VAD [26], Yu VAD [7],
Shin VAD [8], and Ying VAD [17]. The experimental set-
tings are exactly as those in [10].

4.2. Experimental Results:

First, we show the Hinton diagram of the feature distributions
of different noise scenarios in Fig. 1. From the figure, we can
see that most feature distributions are relatively similar with
each other except the subway noise scenario, which means
domain adaptation might be useful.

Table 2 lists the accuracy comparison when the street
noise is used as the source noise scenario. From the figure,
we can see clearly that Scheme 2 is the most powerful one,
followed by Scheme 1. But Scheme 3 is not effective. More-
over, Scheme 3(t) is not only worse than Schemes 1 and 2,
but also sometimes worse than the Lower Bound. This phe-
nomenon manifested empirically that the domain adaptation
schemes affect the performance significantly.

Table 3 lists the accuracy comparison when the subway
noise is used as the source noise scenario. Because the perfor-
mance is no better than the best referenced methods, we only
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Table 2. Accuracy (in percentage) comparison when the street noise corpus (identification = 4) is used as the source corpus.
Due to the length limit, we only report the best performance of the referenced VADs and its corresponding VAD algorithm. The
referenced methods that are marked with “*” means that they are machine-learning-based VADs that are trained and tested in the
matching environments. The line “Average improvement over Lower Bound” is calculated by Scheme #−Lower Bound

Upper Bound−Lower Bound%.

ID Noise Type Referenced Scheme 1 Scheme 2 Scheme 3(s) Scheme 3(t) Lower Bound Upper Bound

1 Babble 75.51 (Ramirez05) 77.15 76.59 75.73 73.17 74.95 79.14

2 Car 79.25 (G.729B) 82.91 83.51 82.92 82.20 82.05 87.09

3 Restaurant 69.59 (Ramirez05) 75.34 75.74 75.19 75.76 74.44 83.78

5 Airport 72.45 (Shin)* 77.92 77.88 77.51 77.32 77.35 82.30

6 Train 75.26 (G.729B) 81.69 82.37 81.42 80.88 80.51 84.25

7 Subway 73.16 (Ramirez05) 74.49 76.42 70.70 68.26 68.44 87.09

Average improvement over Lower Bound 25.79 30.88 13.93 -2.84

Table 3. Accuracy (in percentage) comparison when the subway noise corpus (identification = 7) is used as the source corpus.
ID Noise Type Referenced Scheme 1 Scheme 2 Scheme 3(s) Scheme 3(t) Lower Bound Upper Bound

1 Babble 75.51 (Ramirez05) 54.60 68.11 54.59 54.58 54.58 79.14

2 Car 79.25 (G.729B) 58.05 70.05 63.09 64.11 61.33 87.09

Average improvement over Lower Bound -6.33 44.47 3.44 5.40

Table 4. Pretraining time (in seconds) comparison.

Scheme 1 Scheme 2
Scheme 3

Source Target Hybrid of top layer

774.87 12838.95 12592.76 570.35 985.92

show the results on the first two target noise scenarios without
further running the remaining 4 tasks. Because the subway
noise and the target noise scenario are significantly different,
and also because the source corpus is much larger than the
target corpus, from the table, we can see that the accuracies
of all schemes drop significantly from Upper Bound. How-
ever, we can still observe that the accuracies from Scheme 2
are still significantly better than the Lower Bound.

Table 4 lists the pretraining time of the schemes. From
the table, we observe that Scheme 2 is the slowest scheme.
Although the source DDNN pretraining of Scheme 3 is slow,
it needs to run only once, hence, Scheme 3 is still efficient.

Summarizing the aforementioned, Scheme 2 is the most
effective one in dealing with the mismatching problem; al-
though Scheme 3 is a failed scheme, it provides some useful
information for our future work.

5. CONCLUSIONS

In this paper, we have tried to solve the mismatching prob-
lem between the training corpus and the test corpus via three
DDNN-based domain adaptation schemes. To our knowl-
edge, this is the first work that uses the powerful deep neural

network to deal with the mismatching problem of VAD. Ex-
perimental results have shown that Schemes 2 is promising in
dealing with the mismatching problem of VAD. The results
also have shown that the layer-wise pretraining strategy has
a significant impact on the deep-learning-based VADs. Al-
though Scheme 3 is failed, it does provide an attempt to bal-
ance the training time and accuracy, and provide a contrary
example for showing the effectiveness of the layer-wise pre-
training. Experimental results also have shown that when the
source and target corpora are very dissimilar, the performance
is weaker than the referenced methods.

In the future, we will improve the performance of the
unsupervised domain adaptation by training large-scale deep
models with a large number of noise types using a massive
computing power. We will also focus on the VAD problem in
very low SNR environments, such as SNR = −5dB.
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