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ABSTRACT
Multi-Layer Perceptrons (MLPs) are often interpreted as
modeling a posterior distribution over classes given input fea-
tures using the mean field approximation. This approxima-
tion is fast but neglects the residual uncertainty of inference
at each layer, making inference less robust. In this paper we
introduce a new approximation of MLP inference that takes
under consideration this residual uncertainty. The proposed
algorithm propagates not only the mean, but also the vari-
ance of inference through the network. At the current stage,
the proposed method can not be used with soft-max layers.
Therefore, we illustrate the benefits of this algorithm in a
tandem scheme. We use the residual uncertainty of inference
of MLP-based features to compensate a GMM-HMM back-
end with uncertainty decoding. Experiments on the Aurora4
corpus show consistent improvement of performance against
conventional MLPs for all scenarios, in particular for clean
speech and multi-style training.

Index Terms— Multi-Layer Perceptron, Mean Field The-
ory, Tandem, Uncertainty Decoding

1. INTRODUCTION

The use of Multi-layer perceptrons (MLP) for acoustic mod-
eling [1] and feature extraction [2] is widely spread in au-
tomatic speech recognition (ASR). Recently, the interest in
MLPs has spiked due to their central role in Deep Neural Net-
works (DNNs) [3, 4, 5]. In the context of ASR with DNNs,
MLPs are often interpreted as a probabilistic model attained
by stacking log-linear models [3, 5]. Under this interpreta-
tion, conventional MLP inference can be seen as approximate
probabilistic inference using the mean field approximation.
This approximation implies neglecting the uncertainty of in-
ference at each hidden layer and passing only the average
value to the next layer.

In this paper, we propose a closed form solution for infer-
ence in sigmoid layers named Gaussian Marginalization MLP
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(GM-MLP), in which this uncertainty is taken into consider-
ation. The resulting inference algorithm is closer to the exact
inference through marginalization. Furthermore, it provides a
measure of inference uncertainty at the output of each layer
that can be used for dynamic compensation.

At the current stage of development of the proposed
method, no approximation has been found for the soft-max
layers. Consequently, the method is here exemplified with
a tandem scheme [2] in which GM-MLP-based extracted
features are fed to a conventional Gaussian Mixture Model
Hidden Markov Model (GMM-HMM) speech recognition
system. The uncertainty of inference of the MLP is then
used to dynamically compensate the GMM-HMM system
using Uncertainty Decoding [6]. Results on the AURORA4
show that the presented approach consistently outperforms
the conventional tandem approach. In particular, compensat-
ing the GMM-HMM for the uncertainty of inference of the
GM-MLP produces notable improvements in the multi-style
training scenario, which is usually not the case.

This paper is divided as follows. Section 2 reviews the
mean field approximation for MLPs/DNNs. Section 3 in-
troduces the Gaussian Marginalization MLP (GM-MLP) and
discuses related works. Section 4 details the experimental
setup and Section 5 presents the conclusions.

2. THE MEAN FIELD APPROXIMATION

This section is a review, see [7, 8, 5] for further details. In the
context of ASR, a DNN/MLP of N layers models the poste-
rior probability p(ql|xl) of each acoustic unit ql e.g. mono-
phones, senones, given a feature vector xl. This posterior can
be seen as originating from the marginalization

p(ql|xl) =
∑

hN∈HN

· · ·
∑

h1∈H1

p(ql,h
N , · · · ,h1|xl) (1)

where hN , · · · ,h1 are binary vectors representing the hidden
layer activations. The distribution in (1) factorizes as

p(ql,h
N , · · · ,h1|xl) = p(ql|hN )

N∏
n=1

p(hn|hn−1). (2)
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where the activation of the jth node of the nth layer depends
on all activations of the previous layer through

p(hnj |hn−1) =
exp

(
hnj z

n
j

)
exp (0) + exp

(
1 · znj

) , (3)

with

znj =

I(n−1)∑
i=1

wnijh
n−1
i + bnj . (4)

Here n ∈ {1 · · ·N} and the convention h0 = xl has been
used for simplicity.

Due to the factorization in (2), the marginalization can be
carried out layer by layer in a step-wise fashion as e.g.

p(hnj |xl) =
∑

hn−1∈Hn−1

p(hnj |hn−1)p(hn−1|xl) (5)

Unfortunately, this is computationally unfeasible for a rea-
sonable layer size I(n− 1) since |Hn−1| = 2I(n−1). For this
reason, the so called mean field approximation1 is used. This
approximation assumes that the sum of hidden binary random
variables in (4) collapses into the expected value of its sum.
In other words, we have

p(znj |xl) ≈ δ(znj − E{znj |xl}). (6)

where δ() is the Dirac delta.
This approximation greatly simplifies the marginalization

at the cost of neglecting the uncertainty in znj . We need no
longer to compute the whole posterior p(hn|xl), it suffices to
compute its expected value, which using (3) and (6) yields

E{hnj |xl} =
∑

hn−1∈Hn−1

p(hnj = 1|hn−1)p(hn−1|xl)

≈
∫ ∞
−∞

p(hnj = 1|znj )p(znj |xl)dznj

=

∫ ∞
−∞

p(hnj = 1|znj )δ(znj − E{znj |xl})dznj

=
1

1 + exp
(
−E{znj |xl}

) . (7)

Furthermore, due to the linearity of the expectation operator,
the mean value of znj can be directly computed from (4) as

E{znj |xl} =

I(n−1)∑
i=1

wnijE{hn−1
i |xl}+ bnj . (8)

This leads to the well known formulas for inference in
MLPs/DNNs commonly referred as forward-pass. The same
approximation can be applied to derive the inference at the
last layer of the network p(ql|hN ), which uses a soft-max

1The term mean field theory is also used to encompass more complex
variational approaches to inference, see [8].

non-linearity to yield a categorical posterior distribution over
the acoustic units ql.

MLPs/DNNs are usually trained with Backpropagation,
which uses stochastic gradient and the cross-entropy (CE) cri-
terion. This can also be seen as maximizing the log posterior
probability under the mean field approximation

FCE =

R∑
r=1

Tr∑
l=1

log p(ql|xrl ) (9)

over all frames Tr of each train utterance r, see [7, 5].

3. BEYOND THE MEAN FIELD APPROXIMATION

3.1. The Gaussian Marginalization Approximation

The mean field approximation previously described only de-
mands for the computation of the mean at each step and thus it
is a very fast approximation. However, it completely neglects
the uncertainty at each hidden node given the input p(znj |xl).
This means that each layer is unaware of the error of the pre-
vious layer, making inference less robust.

Consequently, it would be desirable to consider this un-
certainty of inference, while simultaneously keeping the low
computational cost of the mean field approximation.

In this paper, we present a method that provides both char-
acteristics. The basic idea underlying this principle is to ap-
proximate the large sum of hidden variables at each layer (4)
by a Gaussian distribution

p(znj |xl) ≈ N
(
µnj ,Σ

n
j

)
, (10)

rather than the Dirac delta in (6). The parameters of the Gaus-
sian are then

µnj = E{znj |xl}, Σnj = Var{znj |xl}. (11)

The Gaussian assumption is justified by the fact that node out-
puts of a MLP have a weak statistical dependence [9] and the
central limit theorem, since znj is a very large sum of random
variables (4).

With this model, inference follows the same procedure as
the mean field approximation in (7), only that second order
information is also needed. The mean activations can be ob-
tained by solving

E{hnj |xl} ≈
∫ ∞
−∞

p(hnj = 1|znj )N
(
µnj ,Σ

n
j

)
dznj

=

∫ ∞
−∞

1

1 + exp
(
−znj

)N (µnj ,Σnj ) dznj . (12)

This integral is here approximated using the PIecewise Ex-
ponential (PIE) Sigmoid approximation [10]. This solution
approximates the sigmoid function by

1

1 + e−z
n
j
≈ 2z

n
j −1u(−znj ) + (1− 2−z

n
j −1)u(znj ) (13)
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where u(x) is the unit step function. For this approximation
a closed form solution for (12) exists and is given by [10,
Eq. 13]

E{hnj |xl} ≈ 2(µn
j + 1

2 log(2)Σn
j −1)

· Φ

(
−

µnj√
Σnj
− log(2)

√
Σnj

)
− 2(−µn

j + 1
2 log(2)Σn

j −1)

· Φ

(
µnj√
Σnj
− log(2)

√
Σnj

)

+ Φ

(
µnj√
Σnj

)
(14)

where Φ() is the Cumulative Density Function (CDF) of a
normal variable.
Once the mean activations are computed, the second order
information can be computed by taking into account that

E{(hnj )2|xl} = 12 · p(h1
j = 1|xl) + 0 = E{hnj |xl} (15)

thus, the variance can be obtained as

Var{hnj |xl} = E{(hnj )2|xl} − E{hnj |xl}2

= (1− E{hnj |xl})E{hnj |xl}. (16)

Due to the properties of the variance of a random variable we
have that

Σnj = Var{znj |xl} =

I(n−1)∑
i=1

(
wnij
)2

Var{hn−1
i |xl}, (17)

with which we can completely characterize the distribution
(10) and solve the marginalization one layer at a time. The
new inference method for MLPs proposed is hereinafter re-
ferred to as Gaussian Marginalization (GM)-MLP.

3.2. Computational Costs and Current Limitations

The computational cost of the approach presented here is
around twice that of a conventional MLP. For the usual net-
work sizes used in ASR, the cost of inference is dominated
by the linear step (4) and thus replacing the sigmoid compu-
tation by (14) and (16) has a small impact. Since the linear
transformation has to be now applied to both mean (8) and
variance (17), the cost approximately doubles.

The main limitation of the proposed approach is that no
solution for inference with a soft-max layer has yet been
found. Consequently, the GM-MLP can not be currently used
as acoustic model. This limits its use to feature extraction on
a GMM-HMM ASR system as e.g [2]. Interestingly, since
the GM-MLP also produces a variance of estimation of the

features, this variance can be used to compensate the GMM-
HMM system by using observation uncertainty techniques
[11] and thus attain additional robustness.

Finally, another current limitation of the GM-MLP ap-
proach is the lack of a training method under the exact same
approximation. As discussed in Section 2, Backpropagation
can be seen as maximizing the log posterior probability un-
der the mean field approximation. Since the GM-MLP is a
different approximation for the same posterior, it can be ex-
pected that the conventional training process remains valid to
some extent when the new GM-MLP approximation is used
in test. In practice, this creates a mismatch which probably
hinders the performance of the method, as commented in the
experimental section.

3.3. Comparison with Related Works

The solution here proposed can be related to works which ap-
proximate (12) for other purposes e.g. non-linear ICA [12]
and uncertainty propagation through the MLP non-linearity
[10]. These works use similar approximations, but solve a dif-
ferent problem since they ignore the probabilistic view of the
MLP. In particular [10] uses the PIE approximation to prop-
agate uncertainty coming from the front-end, while consider-
ing the MLP as a deterministic function. This requires solv-
ing different problems i.e. computing second order moments
with respect to the sigmoid non-linearity. Finally, with regard
to inference approximations, variational approximations for
belief networks under the mean field theory [8] can also be
related to the work presented here. However, their iterative
nature makes them ill suited for ASR.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

The presented method is here tested in a tandem scheme [2]
on the AURORA4 corpus [13], an artificially corrupted ver-
sion of the Wall Street Journal corpus of 5k words. Two major
steps can be differentiated in the training process.

In a first step, similar to that of [3], we train a hybrid
MLP-HMM system on the alignments attained from a con-
ventional GMM-HMM system. For this purpose, we use
MMSE-Mel-Frequency Cepstral Coefficients (MFCC) fea-
tures [14] with cepstral mean subtraction per utterance2 and
HTK [15]. Training followed Vertannen’s HTK recipe for a
word internal triphone-based ASR system3, we denote this
system as MMSE-MFCC. As hybrid MLP-HMM ASR sys-
tem, we use our in-house system AUDIMUS. This is a classic
three layer MLP using 321 acoustic units, including state-
dependent monophones and phoneme transition units [16].

2Note that, unlike in [14], the MMSE-MFCC variances are not used. The
input to the network is deterministic.

3http://www.inference.phy.cam.ac.uk/kv227/htk/
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Two variants of MLPs were used: clean training and multi-
style training. The latter included various noisy utterances
and recordings with a different microphone in the train-set.

In a second step, we construct a feature extraction by us-
ing the trained MLP output without the soft-max layer, ap-
plying Principal Component Analysis (PCA) to attain dimen-
sionality reduction from 321 to 39 features and applying an
additional mean subtraction per utterance. These features are
then used to train a new GMM-HMM system on HTK, which
is labeled MLP.

MMSE-MFCC and MLP systems are here considered as
baselines. These are compared with a GM-MLP variant at-
tained by replacing the MLP by the GM-MLP on the second
stage of training. It is important to underline that the GM-
MLP approximation was not used during the training of the
MLP model in the first step, due to the restrictions on the
use of soft-max discussed in Section 3.2. Therefore, the GM-
MLP system is not optimally trained. Two variants are tested.
The GM-MLP variant uses only the feature means at the last
layer. A second variant, GM-MLP+UD, uses also the vari-
ance of inference of the GM-MLP features with Uncertainty
Decoding (UD) [6]. This technique only implies adding the
variance obtained from the GM-MLP features to the variance
of each GMM mixture. Note that, since both PCA and mean
normalization are linear operations, obtaining the variances
of the GM-MLP features from the variances at the last layer
(17) of the GM-MLP, is trivial.

The test set is based on the November 1992 ARPA WSJ
evaluation set, but includes six additional versions with differ-
ent types of noise. Although the algorithm here presented is
not specifically designed for robustness against environment
distortions, the results on noisy speech are also provided for
completeness. Results for all noises are averaged into one sin-
gle coefficient but they are considered independently for the
total average.

4.2. Analysis of the Results

Tables 1 and 2 contain the results in terms of Word Error Rate
(WER) for clean and multi-style training respectively. Using
tandem based features (MLP, GM-MLP and GM-MLP+UD)
consistently provides performance improvements on clean
test data with respect to conventional cepstral features, as it
is known [2]. On the contrary, performance for the noisy
test set decreases greatly on clean training conditions (Table
1). This is likely due to over-fitting of the MLP to the clean
training data. This hypothesis is also reinforced by the results
obtained in multi-style training conditions Table 2 for which
the MLP outperforms the MMSE-MFCC baseline.

The GM-MLP method introduced in this work outper-
forms the MLP baseline in all scenarios, but suffers the
same over-fitting problem with the clean trained models as
the MLP. Interestingly, using UD to compensate the GMM-
HMM system for the uncertainty of inference brings notable

Table 1. Aurora 4 WER scores for clean trained GMM-HMM
and MLP. Baselines (top), GM-MLP (bottom). Best results
displayed in bold.

Features Clean Noisy Avg
MMSE-MFCC 9.5 30.4 27.4
MLP 9.2 38.6 34.4
GM-MLP 8.5 36.4 32.4
GM-MLP+UD 7.5 29.2 26.2

Table 2. Aurora 4 WER scores for multi-style trained GMM-
HMM and MLP. Baselines (top), GM-MLP (bottom). Best
results displayed in bold.

Features Clean Noisy Avg
MMSE-MFCC 13.3 19.7 18.8
MLP 9.8 18.9 17.6
GM-MLP 9.4 18.5 17.2
GM-MLP+UD 8.4 16.0 14.9

improvements in all scenarios, and leads to the best results
overall. It is important to underline that UD is normally used
to compensate for uncertainty arising from environmental
distortions e.g. [14]. In these scenarios little or no improve-
ments are attained for clean tests and in particular multi-style
trained models. Compensating for the uncertainty of infer-
ence of the GM-MLP brings however notable improvements
in these scenarios.

Finally, it is also worth noting that the mean normaliza-
tion after PCA played a fundamental role on the performance
of the GM-MLP with no UD. This speaks for the mismatch
between training and test commented in Section 3.2.

5. CONCLUSIONS

In this paper we have introduced a new approximation which
goes beyond the conventional mean field approximation for
MLPs/DNNs. This approximation propagates not only the
mean activations but also their variance through the network.
In this way, the resulting uncertainty of inference at each layer
is taken into consideration. The resulting algorithm is also
closer to the view of the MLP as inference through marginal-
ization of the hidden activations. At the current stage, no ap-
proximation for the soft-max layers has been found, which
limits the use and performance of the method due to train/test
mismatch. However, using the uncertainty of inference for
the dynamic compensation of GMM-HMM acoustic models
based on tandem features consistently outperforms the con-
ventional MLP-based tandem approach. This resulted partic-
ularly convenient for the case of clean speech and multi-style
trained systems, where dynamic compensation brings usually
little improvement. The extension of this approach to cope
with network layers that use the soft-max activation function
opens interesting future research directions.
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