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ABSTRACT

Deep neural network acoustic models have shown large im-
provement in performance over Gaussian mixture models (G-
MMs) in recent studies. Typically, deep neural networks are
trained based on the cross-entropy criterion using stochastic
gradient descent (SGD). However, plain SGD requires scan-
ning the whole training set many passes before reaching the
asymptotic region, making it difficult to scale to large dataset.
It has been established that the second order SGD can po-
tentially reach its asymptotic region in one pass through the
training dataset. However, since it involves expensive com-
puting for the inverse of Hessian matrix in the loss function,
its application is limited. Averaged stochastic gradient de-
scent (ASGD) is proved simple and effective for one pass on-
line learning. This paper investigates the ASGD algorithm
for deep neural network training. We tested ASGD on the
Mandarin Chinese record speech recognition task using deep
neural networks. Experimental results show that the perfor-
mance of one pass ASGD is very close to that of multiple
passes SGD.

Index Terms— deep neural network, speech recognition,
averaged stochastic gradient descent, one pass learning

1. INTRODUCTION

In the past few years, deep neural networks (DNNs) were in-
troduced to speech recognition tasks and gained great suc-
cesses. Specially, the DNN-HMM acoustic models achieved
significant recognition error reduction over discriminatively
trained GMM-HMM models [1]. It is believed that the effi-
cient and powerful modeling ability of deep networks is the
critical factor for the remarkable accuracy gains [2, 3].
Stochastic gradient descent has become the most popular
algorithm for training deep neural networks. For large scale
learning, SGD operates on minibatches and generally con-
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verges to a stable region with acceptable performance. How-
ever, it takes about 10 to 20 passes (or epochs) through the
training data to converge at satisfying parameters. The mul-
tiple passes procedure becomes difficult when one envisions
very large training data. More recently, one pass large scale
learning is considered as a solution of large scale learning be-
cause of its fast convergence property. Polyak and Juditsky
[4] firstly proposed the ASGD and showed that ASGD could
reach the asymptotic region by going through the training data
in only one pass. The original algorithm for ASGD could only
operates on very simple tasks. Therefore, Xu [5] further op-
timized this training algorithm and showed the superiority of
ASGD. Besides, ASGD has already been applied to training
the models for a number of classic machine learning schemes
[6].

In this paper, we aim to explore the one pass learning algo-
rithm (i.e., averaged stochastic gradient descent) for training
DNNs. The first two experiments are conducted on a sub-
set (about 100 hours) of the training dataset. It is observed
that choosing appropriate learning rate schedule contributes
to faster convergence and a better convergence value. Fur-
thermore, we find that different sizes of minibatches result in
different training time and character error rate. The last exper-
iments are conducted on the whole 300-hours training dataset.
We show that the results obtained by one pass ASGD are very
close to the best results from the multiple passes SGD.

The rest of the article is organized as follows. The ASGD
algorithm is described in Section 2. The experimental config-
uration is described in Section 3. We report the experimental
results in Section 4 and conclude the paper in Section 5. In
Section 6, we provide a discussion of relation to prior work.

2. ONE PASS LEARNING WITH AVERAGED
STOCHASTIC GRADIENT DESCENT

2.1. Stochastic Gradient Descent

Let us first consider a supervised learning task. Let 6 de-
note the deep network parameters, L(#) denote the loss
function,V L(6) denote gradient of the loss with respect to the
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parameters 6. Typically, the loss L(6) upon deep networks
is minimized by gradient descent (GD) [7]. Concretely, the
network parameters 6 are updated as follows

0141 =0 — VLN (0;) (1)

where VL (0) = vazl V L;(6) is the gradient on the train-
ing set, and [V is the number of training samples. ; is learn-
ing rate. This method is based on the batch mode and the
parameters updating at each epoch uses the gradient of the w-
hole dataset. Consequently, this method usually shows poor
performance of optimizing the highly non-linear deep model
on large training dataset.

SGD is the on-line version of gradient descent. Instead
of computing the gradient of the whole training dataset, SGD
updates the parameters using gradient of n training samples
randomly sampled from the training dataset,

Ory1 =0 — %VLn(at) (@)

where VL, (0) = > | VL;(#). We refer to the n training
samples as a minibatch. Generally, we use minibatch SGD to
express this algorithm.

Compared with GD algorithm, SGD has shown great
promise for non-linear model training. That’s why SGD is
the most popular algorithm for training DNNs. However, it
takes too many passes of training dataset for SGD to reach
the asymptotic region.

2.2. Averaged Stochastic Gradient Descent

For large scale learning tasks, dealing with optimization prob-
lems on billions of training samples is needed and it is desir-
able for the optimization algorithm to reach the asymptotic
region by going through the training data in only one pass. In
order to accelerate the convergence speed of SGD, Polyak and
Juditsky [4] proposed the ASGD algorithm and performed the
normal stochastic descent in only one pass. For the ASGD,
the average of model parameters 6, = 1 22:1 0; from SGD
is considered as the final model. They showed a nice result
using the ASGD in just one pass of training data. To deal
with large scale learning, Xu [5] improved this algorithm, by
adding a running average 0;,1 = (1 — 1;)0; + 1:0;41. The
average procedure is shown concretely as follows

Or41 =0, — v VL(0;) 3)

Or1 = (1 —ne)0: + 001 4)

where 7 is the rate of averaging. 7, = 0.01 for all the experi-
ments described in this paper. The implementation of ASGD
is shown in Algorithm 1.

In the beginning, the model § and @ are initialized with
model generated from pretraining. Then the training dataset
is divided into several minibatches. Like SGD, ASGD up-
dates the parameters 6; using gradient VL;(6;) which is the

Algorithm 1 Averaged Stochastic Gradient Descent

1: initialize 6y = O;p¢; 50 =0Oinit; =0
2: for 7 in minibatches do
3: VL;(6;) < compute the gradient on model 6,

4: 9t+1 = Ht - ’YtVL(Ht)
5: if L(ﬁt) > L(@t) the}'l
6: Orr1 = (1 —1:)0¢ + 01
7: else
5 t+1
8: 9t+1 = Hil Zjil Hj
o: end if
10: t=t+1
11: end for

gradient of ¢ — th minibatch. In the initial period of train-
ing, we use the running average ;1 = (1 — 1;)0; + 1:0¢41.
Once 0, is better than #;, we begin the model average 6, | ; =
t-s%l Zjill 6;. Unlike the second order optimization methods
[8, 9], ASGD is extremely easy to implement, and we focus
on this algorithm in this paper.

3. MANDARIN CHINESE RECORDED SPEECH
RECOGNITION

3.1. Data

In order to evaluate the effectiveness of ASGD, we perform a
series of experiments using 300 hours of conversational Man-
darin Chinese recorded speech. The feature vectors used for
this speech recognition system are 13-dimensional perceptual
linear predictive (PLP) features appended with the first and
second order derivatives. Frames are 25ms with a 10ms shift
between successive frames. For DNN models, 11 consecutive
frames are used as network input. Mean and variance nor-
malization is performed on per utterance case. The speech
recognition system is evaluated using two individual speech
test sets, namely clean7k and noise360, which are collected
through mobile microphone under clean and noise environ-
ments. We hold out about 10 hours as a development set for
frame accuracy evaluation. The character error rate (CER) is
used to measure the performance of Mandarin Chinese speech
recognition.

3.2. Training tools

All the deep networks in this paper are trained using the modi-
fied Kaldi toolkit [10]. For fast training, we use the distributed
training algorithm (asynchronous stochastic gradient descen-
t). The implementation of asynchronous SGD refers to our
prior work [11]. In this paper, we use a single sever with two
dual-core GPU (NVIDIA Geforce GTX690) cards. There-
fore, each deep network can be trained on the two dual-core
cards in parallel.
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3.3. Deep networks

Before training DNN, we first train a GMM-HMM system
with maximum likelihood (ML) and boosted maximum mu-
tual information (BMMI) criteria. The GMM system is served
as the label generator at the frame level.

The deep networks used for our experiments have seven
hidden layers each containing 2048 hidden units and an out-
put layer with 19864 senones. Two steps are used for the deep
networks training: generative pretraining with the restricted
Boltzmann machines (RBMs) and discriminative training us-
ing the minibatch ASGD with distributed optimization (de-
scribed in section 3.2).

4. EXPERIMENTS

4.1. Effect of learning rate scheduling

It is well known that learning rate scheduling is essential for
obtaining satisfying parameters. Specially, it has been report-
ed in [5] that it takes a large scale training samples for AS-
GD to obtain satisfying parameters if learning rate schedule
is chosen improperly. Therefore, the goal of our first experi-
ment is to explore an appropriate learning rate scheduling for
ASGD. A typical choice of learning rate ; is to use the Ada-
grad [12] adaptive learning rate schedule. For this learning
rate schedule, the learning rate ; = -,;(t) of each parameter
()
\/K+Z§:(T VLij(6:)%°
tory of the gradient with respect to that parameter. Following
[13] we use a variant of Adagrad with a limited memory and
set ' = 1. Specially, we set 7 = ¢ to make the learning rate
dependent only on the current gradient.

Next, we need to consider how to choose the global
learning rate v(t). In this paper, we use four learning rate
schedules to explore the effect of different global learning
rate schedules.

is defined as which depends on the his-

e ASGD-con: the simplest method of setting the learning
rate y(t) is to use a constant learning rate v(t) = . We
set v = 0.00025 by observing the performance of dif-
ferent learning rates on a subset of the training dataset.

e ASGD-xu: another typical choice for the learning
rate y(t) is to use a decaying learning rate ~y(¢) =
Yo(1+t/a)” (we set v9 = 0.008, a = 30,000, 000).
Following Xu [5] we set ¢ = 0.75.

o ASGD-exp: the exponential decaying learning rate
Y(t) = 7o x 1077 (we set o = 0.008, p = 18, 000)
is also considered.

o ASGD-per: a further choice of the global learning rate
is based on development set performance (frame accu-
racy). We decay the learning rate by a decay rate «
(we set a = 0.9995) when the development set frame
accuracy does not improve.
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Fig. 1. Frames accuracy on the subset (about 100 hours) of
training dataset against number of passes through the subset
of training dataset for different learning rate schedule

Table 1. Training runtimes in hours (h) and character error
rate (%) for different sizes of minibatch. - denotes divergence.

] minibatch size \ 64 \ 128 \ 256 \ 512 \ 1024 ‘
’ training time \ 83 \ 4.2 \ 23 \ 1.7 \ - ‘
clean7k 9.25 | 9.27 | 9.30 | 945 -
noise360 26.28 | 26.47 | 26.80 | 27.23 -

Figure 1 shows a comparison of the four global learning
rate schedules. We find that the frame accuracy of ASGD-con
and ASGD-xu increase slowly due to a slow decrease of the
learning rate. The performance of ASGD-exp is very close to
that of ASGD-per. Especially, for these two schedules, the
curve tends to flatten out after one pass. It is because that
the learning rates become so small that the frame accuracy
increases slowly. Moreover, we find that ASGD-per performs
the highest frame accuracy. For the subsequent experiments,
we use ASGD-per schedule.

4.2. Effect of minibatch size

The ASGD optimization is based on minibatch mode, thus
the size T' of the minibatch is a vital factor for the system
performance and training efficiency. Table 1 shows that the
size of minibatch influences both the training time and per-
formance. Undersized minibatch (' = 64) will increase the
training time due to the poor utilization of GPU computation
units. Oversized minibatch (T' = 512) will degrade the sys-
tem performance. Moreover, training tends to diverge when
the minibatch size increase to 1024. When the minibatch size
is in the range 256 to 512, the training time decreases little,
primarily due to the limited number of computing units in G-
PU. Thus, to make a balance between system performance
and training efficiency, we set the minibatch size T = 256 for
ASGD.
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Table 2. character error rate (%) on clean7k and noise360
for SGD and ASGD.

’ Testset \ clean7k \ noise360 ‘
| SGD multiple passes [ 8.11 | 22.00 |
ASGD one pass 8.49 22.87
ASGD two passes 8.35 22.43

4.3. One pass vs. multiple passes

As we know, it takes about 10 to 20 passes (epochs) to opti-
mize the parameters for traditional SGD. Generally, we can
get satisfying parameters using the multiple passes optimiza-
tion. In this paper, the multiple passes optimization proce-
dure is performed using the distributed asynchronous SGD
algorithm. The learning rate decaying method is similar with
ASGD-per schedule. Specially, we decay the learning rate
using smaller decay rate (o« = 0.5) to adjust the learning
rate. The iteration stops if the development set frame ac-
curacy increment is smaller than a small constant A (we set
A = 0.05%). Note that we use different minibatch size during
the multiple passes training iterations. For the first iteration,
we use very small minibatch (7' = 64) for training DNN with
partial (about 10%) training dataset. For the next two itera-
tions, large minibatch (1" = 256) is used. For the subsequent
iterations, we tend to use larger minibatch (7" = 1024).

Comparing with multiple passes optimization, a natural
question is whether we can get comparable results using one
pass optimization. To answer this question, we use the en-
tire 300 hours of training data and test two DNN acoustic
models. One DNN is trained with ASGD optimization. The
other DNN uses traditional SGD optimization. Figure 2 re-
ports development set frame accuracy from the two DNNs.
Table 2 further shows the corresponding CER on clean7k and
noise360. We can observe that ASGD achieves near optimal
results after one pass. Additionally, the results obtained by
one pass ASGD are very close to the best results using the
multiple passes SGD.

5. CONCLUSIONS

In this paper, one pass learning algorithm based on ASGD op-
timization for training DNN acoustic models is presented. We
explore this algorithm for acoustic modeling on three differ-
ent experiments. It is observed that careful choice of learning
rate scheduling algorithm and minibatch size can result in fast
convergence, less training time and good performance for AS-
GD. In particular we show that ASGD with one pass can be
very close to the best results obtained from general SGD with
multiple passes.
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Fig. 2. Frames accuracy on development set against number
of passes through training dataset for SGD and ASGD

6. RELATION TO PRIOR WORK

Most of previous works generally focus on the learning algo-
rithms of SGD and the application on multiple passes opti-
mization. To our knowledge, the work of this paper is the first
time that ASGD with one pass optimization are applied for
training DNNs. Our work is based on the efficient learning al-
gorithm of ASGD proposed by [4, 5]. A similar work on AS-
GD with one pass optimization is described in [6], which uses
this algorithm to solve the simple linear optimization prob-
lems. In our work AGSD are used as the solution of complex
non-linear optimization problem.
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