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ABSTRACT 
 
The recent success of deep neural networks (DNNs) in speech 
recognition can be attributed largely to their ability to extract a 
specific form of high-level features from raw acoustic data for 
subsequent sequence classification or recognition tasks. Among the 
many possible forms of DNN features, what forms are more useful 
than others and how effective these DNN features are in 
connection with the different types of downstream sequence 
recognizers remained unexplored and are the focus of this paper. 
We report our recent work on the construction of a diverse set of 
DNN features, including the vectors extracted from the output 
layer and from various hidden layers in the DNN. We then apply 
these features as the inputs to four types of classifiers to carry out 
the identical sequence classification task of phone recognition. The 
experimental results show that the features derived from the top 
hidden layer of the DNN perform the best for all four classifiers, 
especially for the autoregressive-moving-average (ARMA) version 
of a recurrent neural network. The feature vector derived from the 
DNN’s output layer performs slightly worse but better than any of 
the hidden layers in the DNN except the top one. 
 

Index Terms— deep neural net, feature extraction, ARMA 
recurrent neural net, phone recognition 
 

1. INTRODUCTION 
 
The use of fully-connected feed-forward deep neural networks 
(DNNs) in the architecture of DNN-HMM (hidden Markov Model) 
has dramatically reduced speech recognition errors in recent years 
[4][5][8][9][19][21][22][28][29][36][37]. This success follows the 
general tenet of deep learning that DNNs are capable of extracting 
powerful features or representations from raw data in a 
hierarchical, layer-wise manner. However, among the many 
possible forms of representations in the DNN, whether some forms 
are more effective than others and whether their combinations are 
more useful are yet to be explored. Further, the highly successful 
DNN-HMM architecture, as carefully analyzed in [19], can be 
viewed as a DNN feature extractor followed by a downstream 
“shallow” sequential classifier, where each local classifier is a 
maximum-entropy one, also called softmax or multi-class logistic 
regression, making use of the cross-entropy training criterion. 
Thus, it is natural to study the relative effectiveness of a wide 
range of sequence classifiers beyond maximum entropy, all using 
the common yet diverse set of “deep” features that can be extracted 
from various parts of a DNN. 
     Earlier work has attempted to compare the use of different ways 
of deriving neural-network features in the Gaussian-Mixture-
Model (GMM)-HMM system. The “tandem” approach makes use 

of the log-posterior probabilities generated by the softmax output 
layer of a shallow neural network [18]. The method of building 
deep stacking networks is a more general, recursive way of 
creating tandem-like features as the overall network built gets 
deeper and deeper [10][11][20][33]. Separately, the “bottleneck-
feature” approach imposes a “bottleneck” constraint (i.e., a hidden 
layer with a very small number of units) in the middle of a neural 
network and extracts the features as a weighted sum of the outputs 
of the hidden layer adjacent to the bottleneck layer [16]. Deep 
auto-encoders are also recently used to extract bottleneck features 
in speech feature coding and recognition [12][27]. Most recently, 
Tuske et al. [31] and Yan et al. [35] experimentally compare the 
GMM-HMM and DNN-HMM approaches, using the tandem or 
top-hidden-layer features. It is reported that with the use of these 
DNN-derived features, the GMM-HMM recognizer can produce 
similar speech recognition accuracy to the DNN-HMM. If we view 
these recognizers as two types of “shallow” sequence classifiers 
both receiving DNN-derived features, then it is straightforward to 
understand such results, given the well understood equivalence 
between shallow generative models of Gaussian mixture and 
shallow discriminative log-linear models [17]. 
     The work presented in this paper is focused first on a unifying 
view of deep learning methods for sequence classification, 
expressed in terms of DNN-based feature extraction followed by a 
(shallow) sequence classifier. Then, experimental comparisons are 
made among four sequence classifiers with respect to more diverse 
sets of DNN features than considered in the past as reviewed 
above. Among the four sequence classifiers, two are novel ones 
based on a new approach to formulating and learning recurrent 
neural networks (RNNs) described in detail in [3]. Among the 
diverse set of DNN-derived features, we include those extracted 
not only from the DNN output layer (e.g., as in the stacking or 
tandem-like approaches) but also from all hidden layers of the 
DNN as well as their combinations.  
     The rest of this paper is organized as follows. In Section 2, we 
describe diverse sets of DNN features we select to use for four 
types of sequence classifiers with an emphasis on the RNN 
classifiers. These sequence classifiers are detailed in Section 3. The 
experimental results are reported in Section 4, and a summary and 
discussion provided in Section 5. 
 

2. THE DNN AS A FEATURE EXTRACTOR 
 
We use Fig. 1 to illustrate how acoustic feature extraction from 
raw filterbank data of speech (xt) is accomplished in a DNN with 
three hidden layers (left), and how diverse sets of DNN-derived 
features are fed to the subsequent sequential classifiers (right). 
Here, the vector- and continuous-valued activities, h1,t, h2,t, and 
h3,t, corresponding to the three hidden layers at time frame t, 
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together with the softmax output yt, of the DNN, can be separately 
extracted as feature vectors for the sequence classifier. Appropriate 
concatenations of these DNN feature vectors, possibly with the raw 
speech data xt, can be used as the features to the sequence classifier 
as well. 
 

 
Fig. 1: Use of the DNN as a feature extractor (left) for sequence 
classification (right) that produces linguistic sequences as the 
speech recognition system’s output. 

 
     The DNN shown on the left-hand side of Fig. 1 is trained using 
the one-hot coded target label vectors, denoted by dt, as the 
supervision signals on the frame-by-frame basis. The target vectors 
are constructed using one-hot coding. Temporal segmentation is 
required to determine dt for each time frame t, which is 
accomplished in this work by forced alignment with a separate, 
high-quality GMM-HMM system.  
     Each of the DNN-derived feature vectors, yt, h1,t, h2,t, and h3,t, as 
well as their combination or concatenation can be fed as the input 
feature vector, denoted by vt on the right-hand side of Fig. 1, into 
any type of sequence classifier including the GMM-HMM, 
Conditional Random Field (CRF), RNN, sequence Kernels, etc. 
The output of the sequence classifier is a sequence of linguistic 
symbols such as phrases, words, syllables, characters, or phones. 

The method of learning the weight matrices in the DNN is the 
standard error backpropagation with the weight matrices 
appropriately initialized as in [5][19][23]. The objective function 
can be either frame-level cross-entropy or sequence-level 
maximum mutual information (MMI). As discussed in [24][30], 
these two different objective functions used for training the DNN 
correspond to two different types of sequence classifiers, a max-
entropy classifier (followed by an HMM) and a CRF classifier, 
both to be discussed in the next section.  

 
3. FOUR TYPES OF SEQUENCE CLASSIFIERS 

 
A wide range of sequence classifiers can be used to process the 
DNN-derived acoustic features and to produce linguistic symbol 
sequences as the output of an overall speech recognition system 
shown in Fig. 1. To limit the scope of this work, we have 
experimented with four types of sequence classifiers with 
comprehensive phone recognition results reported in Section 4. 
Here we describe and discuss each of the four sequence classifiers. 
 
3.1. Max-entropy classifier followed by an HMM 
 
In Fig. 2 is the architecture of the Context-Dependent DNN-HMM 
[4][5], which uses softmax nonlinearity at the output layer of the 

static DNN and is trained with the frame-wise cross-entropy 
criterion. The DNN output gives posterior probabilities for each of 
many context-dependent speech classes, divided by prior class 
probabilities to produce (un-normalized) likelihood of the speech 
data for each of the HMM states [2][25].  
 

 
Fig. 2: The architecture of the earliest DNN-based large-
vocabulary speech recognizer [4][5], which can be viewed as a 
DNN to extract features via locally discriminative max-entropy 
training), followed by an HMM as the sequential classifier.    
 
    Let’s regard the architecture of Fig. 2 as a special case of the 
more general family of architectures illustrated in Fig. 1, where the 
sequence classifier is a (static) max-entropy one followed by a 
(temporal/dynamic) HMM. The state posterior probabilities for the 
HMM correspond to the DNN output activity vector yt in Fig. 1. 
Training the DNN using cross entropy is equivalent to learning a 
max-entropy model, a type of log-linear model. In this case, only 
the DNN features of yt in Fig. 1 are used.  
    Another sequence classifier, closely related to the above max-
entropy model, is the GMM-HMM; see [17] for the analysis of 
their relations.  Yan et al. [35] recently reported very similar 
speech recognition accuracy between the use of the architecture 
shown in Fig. 2 and the use of the GMM-HMM as the sequence 
classifier. This is gratifying because of the theoretical equivalence 
of log-linear models (including the max-entropy model) and 
GMM-HMMs. As a result, we do not include in this paper the 
sequence classifier based on the GMM-HMM.  
 
3.2. Conditional random field 
 
If we train the parameters of the architecture in Fig. 2 using full-
sequence MMI instead of cross entropy as the objective function, 
then we have an equivalence of the CRF sequence classifier that 
uses the output vector yt in the DNN as the classifier’s input 
features. This style of full-sequence training for DNN-based 
speech recognizers was first proposed in [24], where the 
equivalence was established between using MMI to perform end-
to-end back-propagation training of the DNN-HMM and back-
propagating errors through a liner-chain CRF to the DNN. The 
subsequent larger-scale full-sequence training of the DNN-HMM 
proved to be highly effective in reducing errors of the DNN-HMM 
trained with cross-entropy [22][30][32]. 
     The CRF is used as one of four sequence classifiers in our 
experiments to be reported in Section 5, which confirm its 
superiority to the frame-based max-entropy classifier. 
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3.3. Recurrent neural network: the AR version  
 
The remaining two types of sequence classifiers used in this work 
belong to the family of recurrent neural networks (RNNs). The 
autoregressive (AR) version of the RNN discussed in this section 
contains only the prediction from the past. Specifically, the history 
of the input is maintained only at the hidden states, and only the 
sample at the current time is input into the model, shown in Fig. 3. 
 

                        
Fig. 3: The architecture of the AR version of the recurrent neural 
network. The history of the input data is maintained at the hidden 
states and only the sample at the current time is input into the 
model.   
     In this AR version of the RNN, the state dynamic (noise free) 
for the hidden state 𝒉! is expressed mathematically as 
 

𝒉! = 𝑓(𝑾!!𝒉!!!+𝑾!!𝒙! +𝒃),   

where 𝑾!!  and 𝑾!!  denote the matrices that collect the input 
weights and the recurrent weights, respectively, 𝑓 is a nonlinear 
function of the hidden units (e.g., sigmoidal as is implemented in 
this work), and 𝒃 is the vector of bias. The “observation” is the 
predicted “labels” or target vector, 𝒍!  ,  a vector of one-hot coded 
class labels. The “observation equation” in the state space 
formulation becomes: 
   𝒚! =𝑾!!𝒉!  or     𝒚! = 𝑔(𝑾!!𝒉!)   
 
where 𝑾!!  is the matrix of output weights, and 𝑔  denotes the 
nonlinearity of output units (e.g., soft-max as is implemented in 
this work). Define the error function in model learning as a sum of 
squared differences between 𝒚! and 𝒍! over time, or cross entropy 
between them. Then, the method of back-propagation through time 
unfolds the RNN over time in computing the gradients with respect 
to 𝑾!! ,𝑾!!  , 𝑾!! , and 𝒃, and the method of stochastic gradient 
descent is applied to update these weight matrices and the bias 
vector.  
 
3.4. Recurrent neural network: the ARMA version  
 
Different from the AR version, the dynamics of the hidden states 
for autoregressive moving average (ARMA) version of the RNN is 
characterized by the following recursion: 
 

𝒉! = 𝑓 𝑾!!𝒉!!! + 𝑾!!,!𝒙!!!

!!

!!!!!

+ 𝒃  

 
where Δ!  and Δ!  denote the number of input samples that the 
network looks forward and backwards. If Δ! = 0, then it only 
looks backwards into the past history and if Δ! = 0, it only looks 
into future. When Δ! = Δ! = 0, it becomes the AR version. The 
first term in the parenthesis above is the AR part, and the second 

term in the parenthesis is the MA part. And we define the order of 
the moving average (MA) to be Δ! + Δ! + 1. The architecture of 
the ARMA version of RNN with order three is shown in Fig. 3.  
 

                        
Fig. 4: The architecture of the ARMA version of the recurrent 
neural network. The history of the input data is maintained both at 
the hidden states and the inputs’ temporal context window.   
 
     The ARMA version of RNN can be converted back into the 
form of AR version by defining the following extra augmented 
variables: 

𝒙! ≜ 𝒙!!∆!
! ⋯ 𝒙!!∆!

! !
 

𝑾!! ≜ 𝑾!!,!∆! ⋯ 𝑾!!,∆! . 
 
     Then, the dynamics for the hidden states of ARMA version of 
RNN become equivalent to 
 

𝒉! = 𝑓 𝑾!!𝒉!!! +𝑾!!𝒙! + 𝒃 . 
 
     In other words, the ARMA version of the RNN model can be 
implemented in an equivalent manner by having a context window 
that slides through several input samples and deliver them as an 
augmented input sample. Thus, the same learning algorithm is used 
to train both versions. In this work, we apply the method of 
backpropagation-through-time but improve the earlier method 
[1][26] by formulating the training process as a formal 
optimization problem with an inequality constraint imposed to 
guarantee the stability of the RNN dynamics (see [3]).   
 

4. EXPERIMENTS AND RESULTS 
 
We use the TIMIT phone recognition task to evaluate the 
effectiveness of the diverse sets of DNN features discussed in 
Section 2 and the four types of sequence classifiers discussed in 
Section 3. The standard 462-speaker training set is used and all SA 
sentences are removed conforming to the standard protocol, as for 
example used in [7][23][24]. A separate dev set of 50 speakers is 
used for tuning all hyper parameters. Results are reported using the 
24-speaker core test set, which has no overlap with the dev set. 
Signal processing for raw speech waveforms is the standard short-
time Fourier transform with a 25-ms Hamming window and with a 
fixed 10-ms frame rate. Raw speech feature vectors are generated 
subsequently using filterbank analysis. This produces 41 
coefficients distributed on a Mel scale (including the energy value), 
along with their first and second temporal derivatives.  
     In our experiments, 183 target class labels are used with three 
states for each of 61 phones. After decoding, the original 61 
context-independent phone classes are mapped to a set of 39 
classes for final scoring according to the standard evaluation 
protocol. In our experiments, a bi-gram language model over 
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phones, estimated from the training set, is used in decoding. The 
language model weight is set to one, and insertion penalty is set to 
zero in all experiments with no tuning. 
     To prepare the DNN and RNN targets during training, a high-
quality tri-phone HMM model is trained on the training data set, 
which is then used to generate state-level labels based on HMM 
forced alignment. 
     In Table 1, we show the results of phone recognition accuracy 
on the TIMIT core test set for four types of sequence classifiers, all 
using the same labels representing 61 monophones with 3 states 
per phone in training. The output vectors, with a dimensionality of 
183, from a DNN with three layers of 2000 hidden units each are 
used as the DNN features for all the four classifiers. (When 1000 
hidden units are used in the DNN, the accuracy is observed to 
degrade slightly.) Both AR and ARMA versions of the RNN in 
Table 1 has a 500x500 recurrent matrix with 10% random, non-
zero entries. Moving average order of the RNN (ARMA) is fixed 
at 13. It is clear from the results of Table 1 that the ARMA version 
of the RNN is the best classifier, trailed by the AR-RNN, CRF, and 
finally the max-entropy one. 
 
Table 1: Comparisons of phone recognition accuracy among four 
sequence classifiers, fixing the DNN-output-layer feature yt.  

 
	
  	
  	
  	
  	
  We now fix the classifier to be an RNN (AR and ARMA 
versions), and assess seven types of features including four sets of 
DNN features (one from each DNN layer), and two ways of 
concatenating the above. Phone recognition accuracy results are 
listed in Table 2, with the symbols for the feature types being 
consistent with those shown in Fig. 1. 
 
Table 2: Phone recognition accuracy of six types of DNN-derived 
features, fixing the sequence classifiers to be the RNN with 200 
recurrent hidden units. 

 
      The most striking observation from Table 2 is that the high-
level feature extracted from the top DNN hidden layer, h3,t, is the 
most effective, followed by the “tandem” feature yt derived from 
the DNN output layer. Lower DNN hidden layers provide less 
effective features but they are still much better than the raw 
filterbank feature xt feeding directly to the RNN. A simple account 
for the difficulty of the RNN receiving raw acoustic data as its 

input is the temporal non-smooth nature of the data, which is hard 
for the RNN to use the parameters in the recurrent matrix to predict 
from one frame to the next. After the DNN extracts high-level 
features from raw acoustic data, the RNN can more easily predict 
the temporally smooth high-level features. The best accuracy, 
81.2%, is obtained using concatenated features from the top hidden 
layer and output layer of the DNN as the input to the RNN (ARMA 
with order 13), with the total input dimensionality of 2183. This 
reaches almost the same level of the highest accuracy for this task 
achieved by the deep convolutional net [7] or by the deep-RNN 
(with LSTM) [14][15], and we do so without the delicate design of 
the convolution-pooling structure as required in [7] and without 
any special memory structure as required in [14][15]. 
     The high accuracy performance achieved by the use of DNN 
features and the subsequent RNN (ARMA) classifier is very robust. 
In Fig. 5 is a typical curve on the progressively improved test-set 
phone recognition accuracy as the RNN training epochs advance. 
 

 
 

Fig. 5: Phone recognition accuracy on the TIMIT core test set as a 
function of the epochs during the RNN (ARMA) training. 
 

5. DISCUSSIONS AND FUTURE WORK 
 
In this paper, we develop a unifying scheme for deep learning the 
speech-centric sequence classification problems. As illustrated in 
Fig. 1, this scheme breaks the problem solution into two parts: 1) 
The use of (static) deep architectures (e.g., the DNN) to extract 
high-level acoustic features that are temporally much more smooth 
than the raw acoustic data sequence; and 2) The use of a sequence 
classifier performing the dynamic decoding task to derive 
linguistic sequences. Compared with end-to-end learning, this two-
stage approach appears to have the benefit of regularization. It 
helps overcome the problem of overfitting in sequence 
classification tasks using the deep models with a very high 
capacity. Such an overfitting problem was found to be prominent 
in the studies reported in [24][30]. 
     While the highly positive evaluation of this scheme has so far 
been carried out on a phone recognition task, where phone 
sequences are the output symbols, we expect it to be effective for 
other tasks such as continuous word recognition, machine 
translation, and spoken language understanding, where either word 
sequences or semantic-slot sequences would become the output of 
the overall deep learning system.  
      Future work will aim to improve the already powerful sequence 
classifier of RNN (ARMA). Effective “pre-training” placed within 
the frameworks of advanced optimization [34] and joint 
generative-discriminative modeling [6][13] is expected to enhance 
the performance of RNN-based sequence classification using 
distributed hidden-state representations and nonlinear state-space 
formulation of speech dynamics on the DNN features. 
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