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ABSTRACT

We propose a new approach for source localization on solids with
applications to human-computer interface. We analyze the wave
propagation of flexural modes of vibration, generated by an impact
on a solid surface, to characterize the dispersive linear time-varying
system having non-linear phase response. We show that a differ-
ence in dispersion between two signals propagating through solids
can be mapped directly to the relative propagation distance if the
signals are appropriately time-warped. We then exploit this impor-
tant property for source localization by computing the similarity of
the warped signals in the time-frequency domain. As the proposed
source localization algorithm jointly estimates warping-based poly-
nomial parameters and source location, the method does not require
pre-calibration.

Index Terms— Human-computer interaction, frequency disper-
sion, source localization on solids, unitary warping.

1. INTRODUCTION

Source localization using signals propagating on a solid surface
has attracted much interest over the years for applications such as
fracture analysis in structures using acoustic emission [1]. More
recently, this area of research has found application in the con-
version of rigid flat surfaces (such as tabletops and glass panels)
into touch interfaces [2] [3] [4] [5]. For such human-computer
interface applications, source localization algorithms have been de-
veloped to localize the point of impact due to touch using signals
acquired by surface-mounted vibration sensors. While the use of
time-differences-of-arrival (TDOA) techniques have been proposed
in [6] [7], these techniques may not be well-suited since the dis-
persive nature of wave propagation on solids introduce non-linear
time-frequency distortion [8]. Analysis of the received signals still
remains a challenge due to temperature variation [9], different modes
of wave propagation as well as wave distortion caused by disper-
sive nature of the channels between the tap impact location and the
sensors. To achieve a reasonably good accuracy, TDOA based al-
gorithms generally require a priori knowledge of material properties
which are normally obtained during calibration [1] [10] [11].

Passive source localization techniques such as the time-frequency
Hermitian angle (TiF-HA) approach [12] and Kullback-Leibler
discrimination information (KLID) [13] have shown to achieve
promising localization accuracy without prior knowledge of mate-
rial properties. These algorithms achieve source localization via
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time-of-arrival (TOA) estimation by exploiting the spectral diversity
of a signal before and after the onset point. The KLID algorithm
estimates the phase transit time by maximizing the Kullback-Leibler
distance between the periodogram of neighboring signal frames. In
the case of TiF-HA, an analysis vector is formed by concatenating a
complex element (taken from a uniformly distributed random vari-
able) with a signal element in the time-frequency domain. The TOA
is then estimated by finding the crossover point where the standard
deviation of the Hermitian angles between the analyzing vector and
a randomly selected reference vector (calculated across frequency
bins) exceeds a pre-determined threshold. Since TOA-based meth-
ods estimate the source location by assuming a single onset point
within each received signal, localization accuracy is sensitive to ad-
ditive noise. It is important to note that, unlike conventional TDOA
based methods such as generalized cross-correlation (GCC) [14]
which exploit the coherence between the received signals, the above
TDOA-based source localization methods are not robust against un-
correlated sensor and/or thermal noise. In addition, existing methods
such as those presented in [12] [13] require calibration for the esti-
mation of phase velocities. This, in turn, may cause inconvenience
to potential users.

Unlike in [12] and [13], we estimate the range difference be-
tween pairs of source-sensor in order to avoid the need of velocity
estimation. To achieve this, we analyze wave propagation through
solids and show that any dispersion in solids can be represented by a
non-linear change in phase function. Therefore, a difference in dis-
persion can be mapped directly to a difference in relative propaga-
tion distances if the signals are properly time-warped. This property
is then exploited for source localization by quantifying the similar-
ity of the warped signal in the time-frequency domain. As the pro-
posed source localization algorithm jointly estimates warping based
polynomial parameters and source location, it does not require pre-
calibration.

2. PROPOSED ALGORITHM

We consider waves propagating on thin rectangular plate surfaces.
We gain insights into the dispersive behavior of the signal propaga-
tion (due to non-linear phase function) from the solution of the wave
equation. These non-linearities can be linearized by an appropriate
time-frequency resampling warping function, which is dependent on
material properties. To avoid material-based calibration, we general-
ize the warping by approximating the solution using a parametrized
warping function.
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2.1. Flexural Vibration of Thin Plate

We consider, at time t, the vertical displacement qi(xi, yi, t) of the
plate surface for the ith sensor at location (xi, yi, t) due to a force
function P (x′, y′, t) at location (x′, y′). According to the wave
propagation model [15]

P (x′, y′, t) = D∇4
i qi(xi, yi, t) + μ

dqi(xi, yi, t)

dt

+ ρLz
d2qi(xi, yi, t)

dt2
,

(1)

where μ is the absorption coefficient of the plate material, ρ the den-
sity, Lz the thickness of the plate, D is the stiffness of the plate and
∇4

i represents the biharmonic operator evaluated at (xi, yi) such that
∇4 = ∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4 . To solve (1), we express P (x′, y′, t)
due to an impact at (x′, y′) as P (x′, y′, t) = p(t)δ(x−x′)δ(y−y′),
where p(t) is any arbitrary function in time and δ(x), δ(y) are the
Dirac delta functions with respect to spatial variables x and y, re-
spectively. The approximate solution for (1) in the space-frequency
domain for an angular frequency ω is given by [16]

q
i
(ri, ω) = P (ω)e−jk(ω)ri , (2)

where P (ω) is the far-field solution of bending wave equation and
ri =

√
(xi − x′)2 + (yi − y′)2 is the distance between the point of

impact and the ith sensor. The wavenumber k(ω) can be obtained
from the homogeneous solution of (1) as

k(ω) = 4
√

(ρLz)/D
√
ω. (3)

The phase velocity, which defines the rate of propagation of particles
corresponding to a single angular frequency ω, is then given by

cp(ω) = ω/k(ω) = 4
√

D/(ρLz)
√
ω (4)

while the group velocity

cg(ω) = dω/dk(ω) = 2cp(ω) (5)

defines the rate of propagation of the signal energy. The difference
between cp(ω) and cg(ω) results in (inter-modal) dispersion of the
wave. This dispersive behavior of (3) results in a non-linear variation
in phase of (2) with respect to ω.

Any dispersive linear time-varying systems can be character-
ized by the non-linear phase function of the signal with respect to
time [17] [18]. These non-linear functions are specific to the nature
of the channel through which the signal propagates. Such transfor-
mations can be modeled using warping-based time-frequency resam-
pling of the original signals [19].

2.2. Time-frequency Warping

The warping transform is a time-frequency resampling transforma-
tion which transforms the time-domain variable qi(t) into a warped
version q̃i(t) using a unitary mapping function. This mapping can
either be performed in time domain using ξ(t), or in frequency do-
main using ξ(ω). Therefore the warped version of qi(t) is given by

q̃i(t) =
√

|dξ(t)/dt|qi[ξ(t)], (6)

where operation qi[ξ(t)] implies sampling qi(t) according to the
warping function ξ(t). The functional inverse of ξ(t) can then be
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Fig. 1. Effect of warping the signal in time domain (after time align-
ing both signals), where κ = 300f−1

s .

defined as ξ−1(t) such that ξ−1[ξ(t)] = t. The corresponding map-
ping function ξ(ω) which maps the change in sampling of frequency
axis due to ξ(t) is given by

ξ(ω) = ω
√

|dξ−1(t)/dt|. (7)

Similarly, the functional inverse of ξ(ω) can be defined as ξ−1(ω)

such that ξ−1[ξ(ω)] = ω. Noting that q̃i(t) and q(t) have the same
energy, the warping function satisfies unitary equivalence.

We now consider the case where ξ−1(ω) = k(ω). Applying
the warping operator to (2) yields signal q̃i(t) in space-frequency
domain given by

q̃
i
(ri, ω) = P [ξ(ω)]

√∣∣dξ−1(ω)/dω
∣∣e−jωri (8)

in which the non-linear change in phase of q
i
(ri, ω) is transformed

to a linear function in warped domain q̃
i
(ri, ω). Now, for a signal

propagated by a distance of ri +Δr,

q̃
i
(ri +Δr, ω) = q̃

i
(ri, ω)e

−jωΔr. (9)

We therefore note that proper selection of ξ(t) will translate the
change in dispersion due to k(ω) to a linear function of range dif-
ference. The accuracy of this characterization is highly dependent
on the priori information of k(ω). As described in [20] [21], k(ω)
may be available or can be derived based on physical dimensions and
mechanical properties of the medium. Such pre-calibration imposes
strong assumptions on the material properties and any variation in
k(ω) due to, for example, caused by a change in environment [9],
will degrade the localization performance.

2.3. Parametrized Time Warping

We address the above problem by jointly estimating the warping-
related polynomial parameters and source location. With reference
to Section 2.2, (9) also indicates that the range difference between
two propagation paths can be estimated from the change in disper-
sion between the two signals. We therefore propose to utilize time-
frequency representations of the parametrized warped signals.

Unlike (8) which requires material properties, we propose to ap-
proximate the wave propagation in plates with that of normal mode
propagation in an ideal waveguide. In an ideal waveguide, the prop-
agation of particles in time domain, for mode l with an angular fre-
quency of ωl, is given by [19] [22]

qli(t) = |qli(t)|ejωl

√
t2−κ2

, (10)
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Fig. 2. Spectrogram of a sensor output due to a metal stylus tap on
an aluminum plate surface.

where |qli(t)| is the instantaneous amplitude of mode l and κ is the
unknown propagation delay in a non-dispersive environment. There-
fore the time-domain warping function parametrized by κ to satisfy
phase linearity is given by [23]

ξκ(t) =
√

t2 + κ2, (11)

and in an ideal waveguide, the time warped signal will be

q̃li(t) =
√

|dξκ(t)/dt||qli[ξκ(t)]|ejωlt. (12)

From (12), for each warped mode, the instantaneous phase ωlt is
now linear in time. Here κ is used to parametrize the dispersion
or spreading of the signal as illustrated in Fig. 1, for the case of
κ = 300f−1

s , where fs is the sampling frequency.
In the context of our application, assuming wi(t) and wj(t) are

the two sensor outputs induced by the vertical displacement qi(t)
and qj(t) respectively, our objective is to find an optimal warping
parameter κopt such that

wi(t) ≈
√∣∣dξoptκ (t)/dt

∣∣|wj [ξ
opt
κ (t)]|ejωjt, (13)

where
ξoptκ (t) =

√
t2 + (κopt)2. (14)

To estimate κopt, we warp one of the two sensor signals over a range
of κ and each warped signal will be checked for similarity with the
other signal by analyzing them in the time-frequency domain. The
value of κ giving the maximum similarity will then be taken as κopt.

To describe the above, we define w̃κ
j (n) as the time-warped ver-

sion of wj(n) computed via (11) and (6) using a value of κ. We
next transform both wi(n) and w̃κ

j (n) into the time-frequency do-
main using short-time Fourier transform (STFT) so that wi(b,m)
and w̃κ

j (b,m) are the STFT coefficients of wi(n) and w̃κ
j (n), re-

spectively, where b is the frequency bin index and m is the time
frame index. Since the algorithm is insensitive to spectral leakage
across frequency bins, in order to save computational cost and to
avoid amplitude smoothing around the onset point, we have used the
rectangular window for the STFT analysis. To preserve maximum
time resolution, the hop size is fixed as one sample.

Due to the trade-off between high frequency resolution and com-
putational complexity, we have chosen the maximum number of fre-
quency bins to be 256. Figure 2 shows the spectrogram of a sensor
output due to a stylus tap on an aluminum plate. We note that beyond
frequency bin b > 30 (corresponding to a frequency of 11 kHz),
the energy of the signal is negligibly small. This is consistent with
the frequency response of the Murata PKS1-4A10 used in our ex-
periment. Hence, in order to reduce the computational cost and in-
fluence of noise, we have limited the analysis of frequency bins to
10 ≤ b ≤ 20.

Here the warped signals w̃κ
j (n) are estimated by resampling the

samples of wj(n) at ξκ(t) using linear interpolation. Interpolation
is required since most of the samples are lying in the non-integer
multiple of the sampling frequency fs = 96 kHz. In our analysis we
iterate the signal similarity analysis over 0 ≤ κ ≤ 100× 2f−1

s .
The estimate of the optimal warping operator κopt is then ob-

tained as
κ̂opt = argmin

κ
J (κ), (15)

where J (κ) quantifies the similarity between a received signal and
the warped signal of the other channel given by

J (κ) =

bmax∑
b=bmin

(
wi(b)− w̃κ

j (b)
) (

wi(b)− w̃κ
j (b)

)T
M(bmax − bmin + 1)

, (16)

given that wi(b) and w̃κ
j (b) is the frequency bin-wise normalized

version of wi(b,m) and w̃κ
j (b,m), respectively, in decibel (dB)

across m = 0, 1, . . . ,M − 1, M is the total number of time frames,
and bmin and bmax are, respectively, the lower and upper range of
the frequency bins.

Since wi(n) and w̃κ
j (n) are defined for t ≥ 0, (11) is valid

only for t > κ. This implies that the sensor nearest to the point
of impact is chosen as the reference sensor to avoid negative range
difference. This reference sensor can be identified using one of the
onset detection algorithms such as presented in [12] [13].

2.4. Source Position Estimation

To estimate the source location, we propose a polynomial relation
model between differences in the source-sensor range and the opti-
mal warping parameter. Utilizing this model, we estimate the source
position by minimization of a non-linear cost function.

Establishing the relationship between the range differences and
the optimal warping parameters can be achieved by taping at known
locations on an aluminum plate surface using a metal stylus. Since
the tap/source locations are known, the range differences is also
known and these points are plotted against the corresponding op-
timal warping parameters as shown in Fig. 3 as dotted points. In
this plot, κ̂opt

γ,i represents the estimated optimal warping parameter
corresponding to the range difference rγ,i between the nearest sen-
sor γ and the ith sensor. A polynomial curve is then fitted on the
data as shown in Fig. 3. From the experimental results conducted
on different plate surfaces we found that a polynomial function of
order two is sufficient to describe the relationship between the range
differences and the optimal warping parameters. Hence, we propose
to use a second-order polynomial function relating rγ,i and κ̂opt

γ,i as
follows

r̂γ,i = α1(κ̂
opt
γ,i )

2 + α2(κ̂
opt
γ,i ) + α3, (17)

where α1, α2 and α3 are the unknown polynomial parameters which
depends on the medium of wave propagation. The relative range
difference r̂i,j between Sensors i and j can now be expressed in
terms of (17) as

r̂i,j = r̂γ,i − r̂γ,j

= α̂1((κ̂
opt
γ,i )

2 − (κ̂opt
γ,j )

2) + α̂2(κ̂
opt
γ,i − κ̂opt

γ,j ), (18)

where α̂1 and α̂2 are estimates of α1 and α2. While these estimates
are not required to determine source position, they are jointly esti-
mated using optimization algorithms as will be described below.

Assuming known sensor positions and defining ri as the distance
between the source and the ith sensor, the unknown source position
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Fig. 3. Variation of optimal warping parameter κγ,i with range dif-
ference rγ,i .

(x′, y′) can be estimated by minimizing the error function

(x̂′, ŷ′) = argmin
x′,y′,α1,α2

∑
i,j

(ri − rj − r̂i,j) , (19)

where r̂i,j is calculated from (18) and ri =√
(x′ − xi)2 + (y′ − yi)2. Such minimization can be per-

formed using, for example, the iterative Levenberg-Marquardt
optimization algorithm [24].

3. EXPERIMENTAL RESULTS

To quantify the performance of the algorithm in terms of accuracy,
we adopt the root-mean-square error (RMSE) given by

RMSE =

√√√√ 1

T

T∑
u=1

(x′(u)− x̂′(u))2 + (y′(u)− ŷ′(u))2, (20)

where tap index 1 ≤ u ≤ T , T is the total number of taps, and
[x′(u), y′(u)]T is the actual tap position while [x̂′(u), ŷ′(u)]T is the
estimated position of the uth tap.

To verify the performance of the proposed method, experiments
were conducted on aluminum and glass surfaces having dimension
of 0.6 m× 0.6 m× 2.5 mm and 0.6 m× 0.6 m× 5.0 mm, respec-
tively. Eight Murata PKS1-4A1 shock sensors were placed 10 cm
apart along the inner square perimeter of the test surfaces. Nine tap
locations are arranged in a uniform grid of 3 × 3 array inside the
area enclosed by the sensor array where the separation between the
nearest row and column tap positions is 10 cm as described in [12].
The tap locations were sequentially tapped using a metal stylus and
a finger. Each position is tapped five times giving T = 45. The
received signals were digitized at fs = 96 kHz sampling frequency
with 24-bit resolution. We have used B = 1024 for TiF-HA and for
the proposed algorithm, B = 256 was found to be suitable given the
trade-off between computational complexity and frequency resolu-
tion. Figure 4 illustrates the variation of J with respect to κ using
data collected on aluminum surface, tapped with the metal stylus. It
is interesting to see that J is a convex function with respect to κ
and this allows one to easily determine its minimum. Hence, for the
cases shown in Fig. 4, κ̂opt

γ,1 = 0, κ̂opt
γ,2 = 49 and κ̂opt

γ,3 = 64. As
expected, value of κopt increases with range difference.

As shown in [11], TiF-HA achieves an overall improvement in
localization accuracy compared to methods based on the Kullback-
Leibler discrimination information [13] and wavelet [25]. Hence, in
this work we compare the performance of the proposed algorithm
with that of TiF-HA only. Figure 5 compares the performance of
the proposed algorithm with TiF-HA in terms of RMSE and stan-
dard deviation in RMSE for source localization. The results show
that, for taps made by the stylus, the proposed algorithm can achieve

Fig. 4. Variation of J with respect to κ (scaled by 2f−1
s ) for various

values of range difference for aluminum plate surface.
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Fig. 5. Performance comparison of the proposed algorithm with TiF-
HA algorithm (a) RMSE in source localization and (b) standard de-
viation of RMSE in source localization.

reduction in RMSE of 7 mm and 2 mm compared to TiF-HA, for
aluminum and glass surfaces, respectively. The standard deviations
of proposed algorithm is also lower compared to TiF-HA. For im-
pacts made by the finger, the RMSE and standard deviation are only
modestly higher than that of TiF-HA. The increase in RMSE for alu-
minum is about 1 mm whereas for glass it is 0.1 mm. Similarly,
the standard deviation in RMSE is also modestly higher; approxi-
mately 3 mm for aluminum and 2 mm for glass, compared to that
of TiF-HA. For a large surface considered in this experiment, such
degradation is insignificant and in addition, unlike TiF-HA, the pro-
posed algorithm does not require pre-calibration.

4. CONCLUSION

We propose a source localization algorithm on solids. This algo-
rithm exploits the similarity of the warped dispersive signal in time-
frequency domain. We analyzed the wave propagation of flexural vi-
bration due to an impact on a plate surface and show that the change
in dispersion between two signals is dependent on the range differ-
ence between the propagation path of the signals. Utilizing this, we
developed a source localization algorithm for impact localization on
solid surfaces. As the proposed source localization algorithm jointly
estimates the model parameters and source location, this method
does not require pre-calibration. The algorithm is validated via ex-
periments conducted on aluminum and glass plates, for both stylus
and finger taps.
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