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ABSTRACT

Many features used in speech recognition tasks are hand-crafted and
are not always related to the objective at hand, that is minimizing
word error rate. Recently, we showed that replacing a perceptu-
ally motivated mel-filter bank with a filter bank layer that is learned
jointly with the rest of a deep neural network was promising. In this
paper, we extend filter learning to a speaker-adapted, state-of-the-
art system. First, we incorporate delta learning into the filter learn-
ing framework. Second, we incorporate various speaker adaptation
techniques, including VTLN warping and speaker identity features.
On a 50-hour English Broadcast News task, we show that we can
achieve a 5% relative improvement in word error rate (WER) using
the filter and delta learning, compared to having a fixed set of filters
and deltas. Furthermore, after speaker adaptation, we find that fil-
ter and delta learning allows for a 3% relative improvement in WER
compared to a state-of-the-art CNN.

1. INTRODUCTION

Designing appropriate feature representations for speech recognition
has been an active area of research for many years. For example, in
large vocabulary systems, improvements in WER are observed by
using speaker-adapted and discriminatively trained features [1, 2, 3].
However, oftentimes feature design is done separately from classi-
fier design, and thus the designed features might not be best for the
classification task. Deep neural networks are attractive because they
have been shown to do feature extraction jointly with classification
[4] such that features are tuned to the classification task.
Convolutional neural networks (CNNs) are a specific type of
DNN that have shown state-of-the-art performance across a variety
of small and large vocabulary tasks [5], [6]. The most popular fea-
tures to use with CNNs are hand-crafted log-mel filter bank features.
The mel-filter bank is inspired by auditory and physiological evi-
dence of how humans perceive speech signals [7]. We argue that a
filter bank that is designed from perceptual evidence is not always
guaranteed to be the best filter bank in a statistical modeling frame-
work where the end goal is word error rate (WER). Log-mel features
are created by passing a power spectrum through a mel-filter bank,
followed by a non-linear log operation, which can be modeled as one
layer of a neural network, which we showed to be promising in [8].
In this paper, we extend the work in [8] in a variety of ways.
First, it has been shown that log-mel features and their time dynamic
information (represented by deltas (d) and double deltas (dd)) are
better than using just static log-mel features [6]. The delta operation
can be seen as a linear operation on log-mel features, and can also
be learned by a neural network. The first goal of this paper is to
incorporate delta learning into our filter learning framework.
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Second, the work in [8] was presented on a speaker independent
(SI) system. Oftentimes we see that gains demonstrated on an SI
system disappear once speaker adaptation is incorporated [3]. We
add speaker adaptation into the filter and delta learning framework
using two methodologies. Vocal tract length normalization (VTLN)
is a popular technique that warps the speech from different speakers
and different vocal tract lengths into a canonical speaker with an
average vocal tract length. While typically VTLN-warping is applied
to the filterbank, it can also be applied directly on the power spectra
[9], and we follow this implementation in our filter and delta learning
framework. In addition, we explore adapting the CNN to the target
speaker through the use of identity vectors (i-vectors) [10], which
had been previously explored for speaker adaptation of DNNs.

Data-driven learning of filters has been explored in a variety of
contexts. For example, [11] investigated deriving RASTA-like filters
from phonetically labeled speech data using Linear Discrimininant
Analysis (LDA). Furthermore, [12] looked at constructing tempo-
ral filters using principal component analysis (PCA) and the mini-
mum classification error (MCE) criterion. In addition, [13] learned
a discriminative filter bank model jointly with a classifier using a
discriminative training criterion, though based on a relatively sim-
ple distance-based classifier. Our work differs from previous work
in that filter and delta learning is performed within a neural network
framework. As neural networks are state-of-the-art acoustic models
[14], it is important that filter and delta learning is done on a strong
acoustic model rather than a simpler classifier.

Our experiments are performed on a 50-hr English Broadcast
News (BN) task [15]. The baseline system, a state-of-the-art deep
CNN [6] trained on log-mel filter bank + d + dd features, has a
WER of 19.5%. Using filter and delta learning, we achieve a WER
of 18.6%, a 5% relative reduction. By incorporating VTLN and i-
vectors, the baseline WER improves to 17.8%. Incorporating both of
these techniques into the delta and filter learning network achieves
a WER of 17.3%, a 3% relative reduction. This demonstrates that
filter and delta learning still retain value after speaker adaptation.

The rest of this paper is organized as follows. Section 2 de-
scribes the basic architecture of doing filter and delta learning jointly
with CNN training. The experimental setup and CNN architecture
is discussed in Section 3. Section 4 presents experiments with filter
and delta learning, while Section 5 discusses incorporating speaker
adaption into the learning framework. Finally, Section 6 concludes
the paper and discusses future work.

2. FILTER AND DELTA LEARNING

Convolutional neural networks (CNN) are commonly trained with
log-mel filterbank features, as well as the delta and double-delta of

6889



these features [6]. While the process of generating these features
is often separate from the CNN training process, both the filter and
delta learning stages can be seen as different layers within a neural
network, and can be learned jointly with the rest of the CNN.

The proposed model for filter and delta learning with a CNN
framework is shown in Figure 1. Note that the input into the filter
learning stage is the normalized log of the power spectrum, which is
then taken to be positive using the exponent. Applying the normal-
ization before the filter learning was found to be beneficial in [8, 16].
Below, we explain filter and delta learning in more detail.
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Fig. 1. Filterbank and Delta Learning Modules With a CNN

2.1. Feature Generation

To describe filter bank and delta learning more mathematically, first
denote f as the input power spectral feature. Furthermore, denote
exp(W,;) as the weights for filter bank 7, which span over a small lo-
cal frequency region of the power spectrum. Here exp(W) denotes
an element-wise operation. The individual elements j of weight vec-
tor for filterbank 7 are denoted as exp(W; ;) € exp(W;). The ex-
ponent operation ensures that the filterbank weights are positive. In
addition, f; € f are the power spectral components which corre-
spond to filter bank 4, and f; ; € f;, are the individual frequency
components j that span over filter bank region .

Following the filter-bank learning idea presented in [8], as
shown in Equation 1, we take the log of the power spectrum f; ; € f.
Then, as shown by Equation 2, the features are normalized using
mean and variance parameters { f; 5, 0 ; } to get n; ;. After the nor-
malization, an exponent is applied to n; ; in Equation 3, to ensure
that the input features into the filter bank, e; ;, are positive. The
normalized features e; ; € e; are then passed through the filter bank
i, and the log is taken, to produce output m;, given by Equation 4.

lij = log(fij) )]

i — i

nj = ———= Mg 2
Ti,j

e;i,; = exp(ni,;) 3)

m; = log (exp(W?)ei) =log (Z exp(Wi,j)em) 4)
J

Given the filterbank features m,;, we then compute a time deriva-
tive delta of this feature. A common equation for computing delta
features [17] is shown in Equation 5 , where oy are the delta coef-
ficients assumed to be integers. A popular choice for o values is
a1 = 1 and s = 2. Notice that this equation assumes that the
coefficients oy and —a; are applied to symmetric points m;1, and
Mi+a,- It also assumes that no scaling is applied to the current frame
m; when computing m¢, and that this delta coefficient is zero.

Sy (Mita, — mi—a,)
2 2115\1:1 ai
In this paper, we give more freedom to delta coefficients, not
requiring them to be symmetric around zero and also allowing for a
non-zero delta coefficient at time ¢ = 0. Our proposed method for
computing deltas is given by Equation 6.
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Similarly, the double-delta of the filterbank feature, is computed

by taking the time derivative of the delta filterbank feature m¢. Our

proposed equation for computing double-delta is given by Equation
7, where 3; are the double-delta coefficients.

M d
ai _ 2oi=—n B
i = M

1=
After computing filterbank and delta features, namely m;, m¢

and md?, these features are then passed as input to the CNN, as
indicated by streams (1), (2), and (3) in Figure 1 .

(6)
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2.2. Delta Learning

The goal of backpropagation is to learn a set of weights that opti-
mize some objective function L. Typically, these weights are learned
through stochastic gradient descent, by taking the derivative of the
objective function with respect to the weights, and then updating the
weights. For example, using stochastic gradient descent optimiza-
tion, the weight update for the double-delta coefficient (; is given
by Equation 8, where + is the learning rate.

oL

Be =B —~ 9B: )

The derivative of the objective function w.r.t the weights can be
easily calculated by back propagating error gradients from previous
layers. Specifically, if m¢¢ in Equation 7 is the output after comput-
ing the double-delta features, then using the multivariate chain rule,
the derivative of the objective function with respect to coefficient 3,
can be written as Equation 9. Here we assume that the term is

oL
Bm?d
computed using the standard back propagation equations [18].
oL _ oL omdd
0B amid 9B,

©

6890



The update equation for the delta coefficient « is a bit more com-
plicated, as the delta feature m? is computed by back propagating
error gradients from both the CNN and double-delta layer, as shown

streams (2) and (3) in Figure 1.

oL _ oL omf
8&1 o Bmf aat

oL omdd om?

Omdd omd Oy (10)

2.3. Filter Learning

After the double-delta and delta coefficients are updated, the last
step is to update the filter learning weights. The derivative of the
objective function given the filter weights for component j in filter
bank ¢, denoted as weight WW; ; is shown in Equation 11. Notice the
derivative includes a back propagation term from both the CNN and
delta-layer, as shown by streams (1) and (2) in Figure 1.

oL oL 0Om; oL omé om;
= + 7 (11)
GWZ'J Bml GWM 8ml 87’774 aWiLj

Equations 9, 10 and 11 demonstrate how both the filter bank and
delta computations can be learned jointly with the rest of a CNN.

3. EXPERIMENTS

Experiments are conducted on a 50-hour English Broadcast News
(BN) task [15]. The acoustic models are trained on 50 hours of data
from the 1996 and 1997 English Broadcast News Speech Corpora.
Results are reported on the EARS dev04f£ set.

The baseline CNN system is trained with 40 dimensional log
mel-filter features, along with the delta and double-deltas, which are
per-speaker mean-and-variance normalized, rather than the speaker-
independent globally normalized filter learning system proposed in
[8]. The architecture and training recipe of the CNN is similar to [6],
which was found to be optimal for BN. Specifically, the CNN has 2
full weight sharing convolutional layers with 256 hidden units, and
3 fully connected layers with 1,024 hidden units per layer. The final
softmax-layer consists of 512 output targets. All CNNs are trained
with cross-entropy, and results are reported in a hybrid setup.

4. RESULTS WITH DELTA LEARNING

In this section, we present experiments and results with various mod-
ifications to the filter and delta learning idea presented in Section 2.

4.1. Delta Learning

We explore learning delta and double-delta coefficients in Equations
6 and 7. First, we investigate the optimal delta size for both static and
learned deltas. A delta size of 3, for example, corresponds to fixed
delta coefficients of [-1, 0, 1], while a delta size of 5 corresponds to
fixed delta coefficients of [-2, -1, 0, 1, 2]. Note that these fixed deltas
are used as an initialization in delta learning.

Table 1 shows the WER for different delta sizes. The baseline
log-mel + delta (d) + double-delta (dd) system is a 19.5%, with a
delta size of 3. If filter learning is applied, and deltas are computed
on the output of the filter layer, but not learned, the WER is at 19.1%,
with a delta size of 3. Learning the filter and delta coefficients with
the strategy outlined in Section 2, drops the WER to 18.8%. Note
that with delta learning, the optimal size is 5, and a bit more freedom
can be given to the deltas. Overall, filter and delta leaning offers a
4% relative improvement in WER over the baseline log-mel+d+dd.

Method Delta Size | WER
Log-mel + fixed d + dd 3 19.5
Log-mel + fixed d + dd 5 19.6
Filter and delta learning 3 19.0
Filter and delta learning 5 18.8
Filter and delta learning 7 19.0

Table 1. WER, Filter and Delta Learning

A closer look at the learned d+dd coefficients is given in Table 2,

compared to the initial d and dd starting point of [-0.2, —0.1,0,0.1,0.2].

First, we see that learned deltas which are symmetric about zero, do
not sum to zero, which is very different than the hand-crafted delta
filters. Second, the 0" delta coefficient is found to be non-zero,
again different than hand-crafted delta filters. Overall, this leads to
a much different shape for the delta and double-delta learned filters
compared to hand-crafted filters. To understand if the non-zero
delta sum and 0" coefficient are beneficial, in the next section we
explore various regularization techniques to force the learned deltas
to behave more like hand-crafted ones.

Index | t=—-2 |t=—-1|t=0 |t=1|t=2
o 0.155 -0.003 | -0.089 | 0.002 | 0.153
Bt -0.454 -0.121 0.011 | 0.130 | 0.481

Table 2. Learned Delta and Double-Delta Coefficients

4.2. Delta Learning Regularization
4.2.1. Total Delta Sum = 0

The first regularization we explore is to ensure that the sum of all
delta coefficients is zero. The new loss function £ is defined as the
sum of the unpenalized £ plus a penalty term which tries to drive
the sum of the deltas to zero, as shown in Equation 12. Here )\ is a
constant which weights the penalty term. The same regularization is
also applied to the double-delta filters.

N 2
£—£b+/\<z at> (12)

t=—N

4.2.2. Symmetric Delta Only Sum = 0

The second regularization we explore is to ensure that symmetric
delta terms, in other words a—t and a, sum to zero. The new loss
in Equation 13 incudes a penalty term which tries to drive the sum
of symmetric deltas to zero, as shown in Equation 13.

N
L=Ly+2) (- +ain)? (13)

t=1

4.2.3. Enforcing 0'" Delta = 0

Finally, the third regularization explored is to force the 0" delta
coefficient to go to zero after updating the delta weights.

4.2.4. Results

Results with different delta regularizations are shown in Table 3. We
can see that all of the regularization techniques degrade the WER.
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This helps justify our results that an appropriate delta and double-
delta need not have coefficients symmetric about zero sum to zero,
and also that the 0" delta coefficient need not be zero.

Filter and delta learning, No Regularization | 18.8
Filter and delta learning, Total Sum = 0 19.0
Filter and delta learning, Symmetric Sum =0 | 19.0
Filter and delta learning, 07" delta = 0 19.2

Table 3. WER, Delta Regularization

4.3. Delta Learning Per Dimension

Another drawback of static deltas is that the same coefficient oy is
applied to all dimensions of the feature vector m; € RY. There is
no reason to believe that each feature dimension should have exactly
the same delta. For example, low-frequency regions have different
time-dynamic information than high-frequency regions, and it seems
plausible that speech is more suited to having a different delta per di-
mension. Table 4 shows that delta learning per dimension offers a
small improvement over learning one delta for all dimensions. Over-
all, we see that delta and filter learning offers a 5% relative improve-
ment over using fixed filters and deltas.

Method WER

Log-mel +d + dd 19.5

Filter learning + d + dd 19.1

Filter and delta learning 18.8

Filter and delta learning, per dimension | 18.6

Table 4. WER, Filter and Delta Learning

5. SPEAKER ADAPTATION

In this section, we discuss experiments incorporating speaker adap-
tation into the filter and delta learning framework.

5.1. Incorporating VILN

First, we explore incorporating VTLN into our model. Typically
VTLN-warping is applied by constructing filter banks with different
frequency warps, and choosing the optimal warped filter bank for
each speaker via maximum-likelihood [19]. Since we have just one
filterbank (as it is learned), this type of approach for VTLN will not
work in our framework. Alternatively, VTLN can also be applied on
the power spectra itself [9], and therefore just one filterbank can be
used, which fits much better into our model framework.

Table 5 shows the results with vtln-warping for both the log-
mel baseline, and proposed filter+delta learning. Note that for the
log-mel system, warping is performed on the filterbank rather than
the power-spectra due to implementation efficiency, though we have
found no difference in performance by warping either. The table
shows that even after vtln-warping, the filter+delta learning system
continues to show gains over the baseline.

Method WER
VTLN + log-mel + d + dd 18.7
VTLN + Filter + delta learning | 18.0

Table 5. WER, Filter and Delta Learning with VTLN

5.2. Incorporating I-Vectors

Finally, we explore incorporating i-vectors into our model. I-vectors
were first explored in [10] but for DNNs. Since CNNs require fea-
tures which obey a frequency (and time) locality property, i-vectors
cannot be concatenated with the full dimension of learned filter fea-
tures, which have this locality property [8]. We compare two differ-
ent methodologies to incorporate i-vectors into CNNs.

I-vectors can be incorporated into the convolutional layer by
concatenating the feature with every localized frequency patch . For
example, if the CNN sees a 9x9 time-frequency patch of localized
features, we concatenate the 100-dimensional i-vectors into this fea-
ture so that the new filter size becomes 9x109. Every time the CNN
shifts in frequency, the same i-vector is concatenated to the current
set of localized features. This idea has been explored before when
incorporating the non-localized energy feature into a CNN [5]. Al-
ternatively, since we know i-vectors can be incorporated into fully
connected DNN layers, we can use a joint CNN/DNN approach.
Specifically, we can feed the i-vectors into one fully connected DNN
layer, and then join this output into the first fully connected layer of
the CNN. This joint CNN/DNN approach has been explored before
for CNNs when combining different feature streams [20, 21].

Table 6 shows the WER for the two different methodologies.
Just for simplicity to avoid the extra dimensions with d+dd, we com-
pare the two different ideas of incorporating i-vectors with just filter
learning. We see there is an improvement in WER when i-vectors are
incorporated, but there is not a huge difference in final performance
when incorporating i-vectors at the CNN or DNN level. Incorporat-
ing at the DNN layer is a bit faster, as we do not need to add i-vectors
into the localized features for each CNN shift. For this reason, we
use this approach for i-vectors in subsequent experiments.

Method WER

Filter learning only 19.5

Filter Learning only + I-vector at CNN level | 18.8
Filter Learning only + I-vector at DNN level | 18.7

Table 6. WER, Incorporating I-vectors into CNNs

Table 7 compares the results of VTLN and i-vectors for both
the baseline log-mel+d+dd and filter+delta learning systems. After
including i-vectors, filter and delta learning still maintains a 3% rel-
ative improvement over the baseline, showing the value of this tech-
nique over a strong speaker-adapted, state-of-the-art CNN baseline.

Method WER
VTLN log-mel + d + dd + i-vectors 17.8
VTLN + Filter + delta learning + i-vectors | 17.3

Table 7. WER, Filter and Delta Learning with VTLN and I-Vectors

6. CONCLUSIONS

In this paper, we improved the filter learning idea proposed in [8] by
incorporating delta learning into this framework. We also presented
results on a strong baseline, after incorporating speaker-adaptation
techniques such as VTLN and i-vectors. On a 50-hour BN task, the
proposed filter and delta learning strategy has a WER of 18.6%, a 5%
relative improvement over a baseline log-mel+d+dd CNN. After in-
corporating speaker adaptation, the filter and delta learning approach
has a WER of 17.3%, still showing a 3% relative improvement over
the speaker-adapted CNN baseline.
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