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ABSTRACT

In this contribution we derive a variational EM (VEM) algo-

rithm for model selection in complex Watson mixture models,

which have been recently proposed as a model of the distribu-

tion of normalized microphone array signals in the short-time

Fourier transform domain. The VEM algorithm is applied to

count the number of active sources in a speech mixture by

iteratively estimating the mode vectors of the Watson distri-

butions and suppressing the signals from the corresponding

directions. A key theoretical contribution is the derivation of

the MMSE estimate of a quadratic form involving the mode

vector of the Watson distribution. The experimental results

demonstrate the effectiveness of the source counting approach

at moderately low SNR. It is further shown that the VEM al-

gorithm is more robust with respect to used threshold values.

Index Terms— Blind source separation, Bayes methods,

Directional statistics, Number of speakers

1. INTRODUCTION

Blind source separation (BSS) approaches that exploit the

sparseness of speech in the short-time Fourier transform

(STFT) domain have recently become very popular [1, 2].

With this approach it is assumed that at most one source is

active in a time-frequency slot. An advantage of sparseness-

based source separation is that it is applicable to both over-

and underdetermined cases. This may be particularly interest-

ing if the number of sources is not known in advance, which

is often the case in practical situations. Model selection al-

gorithms, that compare models of different complexity with

respect to criteria, such as penalized likelihood or Bayesian

information [3], are usually computationally expensive. An

alternative are finite mixture models, where the model order

is determined in the course of the mixture parameter estima-

tion, such as the variational Expectation Maximization (EM)

algorithm for Gaussian mixture models [4, 5].

Araki et al. modeled the histogram of directions of ar-

rivals (DOAs) with a Gaussian mixture model (GMM) [5].

Imposing a sparse Dirichlet prior on the mixture weights

caused the weights of those mixture components to tend to

The work was in part supported by Deutsche Forschungsgemeinschaft

under contract no. Ha3455/8-1.

zero, that did not correspond to a speaker. After sufficiently

many iterations there remained as many non-zero mixture

weights as there were active speakers.

While the GMM had to be adjusted to be an appropri-

ate model for DOAs, i.e., angles, a perhaps more elegant

approach is to directly model the microphone signals in the

STFT domain. In [6] we proposed to model the unit-length

normalized vectors of microphone signals to be draws from

a complex Watson mixture model (cWMM) since it allows

to model uncertainties about directions of complex unit-norm

vectors. The Watson distribution is a probability distribu-

tion defined on the unit hypersphere in the D-dimensional

complex vector space [7].

Rather than imposing a Dirichlet prior on the mixture

weights of the cWMM, we propose a quite different approach

to estimate the number of simultaneously active speakers: the

posterior distribution of the mode vectors of a two-component

Watson mixture is estimated via a variational EM algorithm.

Here, one mixture component is meant to represent the most

dominant speaker while the other captures the remaining

speech and noise. Then signals from the direction indicated

by the mode vector corresponding to the dominant speaker

are suppressed and the VEM algorithm is restarted with this

modified input signal. This procedure is continued until a

maximum number of expected speakers is reached. The

sources are then counted by thresholding concentration pa-

rameters, weights and scalar products between mode vectors.

The benefit of a fully Bayesian treatment becomes apparent,

if the VEM algorithm is compared to an EM algorithm with

point estimates, which is more sensitive with respect to the

choice of a threshold.

2. VARIATIONAL EM ALGORITHM

2.1. Modeling and feature extraction

Consider a convolutive mixture of K independent source sig-

nals Sk(t, f), k = 1, . . . ,K, captured by D microphones

yielding the sensor signals Xd(t, f), d = 1, . . . , D in STFT

domain [2]. Using vector notation we have

X(t, f) =

K∑

k=1

Hk(f)Sk(t, f) +N(t, f), (1)
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where X = (X1, . . . , XD)
T

is the vector of sensor sig-

nals, Hk = (H1,k, . . . , HD,k)
T

is the vector of multiplica-

tive transfer functions associated to source k, and N =
(N1, . . . , ND)

T
is the noise vector. Here t = 1, . . . T denotes

the time frame and f = 1, . . . F the frequency bin index

while ignoring the constant component f = 0.

Implying sparseness of the source signals, each vector

X(t, f) is associated to either one prevalent source or con-

sidered to be noise. This is expressed by the latent binary

(K + 1)-dimensional random vector c(t, f), for which com-

ponent ck(t, f) = 1, if the k-th source is dominant, while

all other components are zero. cK+1(t, f) = 1 indicates that

only noise is present in the given time-frequency slot.

According to the normalized observation vector approach

which has been proposed in [8] vectors X are phase normal-

ized, frequency normalized and normalized to unit-norm. Ar-

bitrarily selecting the signal of the first microphone as the ref-

erence we have

X̃d(t, f) = |Xd(t, f)| exp
(
j
arg (Xd(t, f)X

∗
1 (t, f))

4f/Ffsc−1dmax

)
,

Y(t, f) = X̃(t, f)/
∥∥∥X̃(t, f)

∥∥∥ ,
(2)

where fs is the sampling rate, c is the speed of sound and dmax

is the maximum distance between the sensors. The frequency

normalization assumes that the microphone spacing is small

enough such that no spatial aliasing occurs and that there is a

linear frequency dependency of the phase of H(f).

2.2. Statistical modeling

The normalized observation vectors Y = {Y(t, f)|∀t, f}
form clusters on a D-dimensional complex hypersphere

[6]. This distribution is modeled by a cWMM with the

set of mode vectors W = {W1, . . . ,WK+1}, considered

to be random variables to infer, while the Watson con-

centrations κ = (κ1, . . . , κK+1)
T

and mixture weights

π = (π1, . . . , πK+1)
T

are considered parameters to esti-

mate. The concentration for the spatially uncorrelated or

diffuse noise component is fixed to κK+1 = 0 which corre-

sponds to a uniform distribution on the complex hypersphere.

Thus, the likelihood is given by:

p(Y|C,W;κ)

=
T∏

t=1

F∏

f=1

K+1∏

k=1

(
1

cW(κk)
eκk|WH

k Y(t,f)|2
)ck(t,f)

.
(3)

The set of the class responsibilities C = {ck(t, f)|∀t, f}
has a categorical distribution with mixture weights π [3],

whereas the set of Watson mode vectors W follows a com-

plex Bingham distribution depending on the set of complex

Hermitian positive-semidefinite Bingham parameter matrices

B = {B1, . . . ,BK+1}:

p(C;π) =
T∏

t=1

F∏

f=1

K+1∏

k=1

π
ck(t,f)
k , (4)

p(W;B) =
K+1∏

k=1

1

cB(Bk)
eW

H

k BkWk . (5)

The denominators cW(κk) and cB(Bk) are the normal-

ization factors for the Watson and Bingham distributions, re-

spectively:

cW(κk) =
(D − 1)!

2πDM(1, D, κk)
, (6)

cB(Bk) =
1

4πM( 12 ,
3
2 ,B0,k)

, (7)

where M(·) is the confluent hypergeometric function for

scalar argument defined in [9], Equation 13.2.2, or for matrix

argument defined in [10], correspondingly.

Figure 1 illustrates the statistical dependencies between

the random variables in circles, the observable random vari-

able Y doubly-circled and hyper-parameters depicted in

squares.

C Y W

π κ B

Fig. 1: Directed graphical diagram of statistical modeling

2.3. Derivation of variational EM algorithm

In the variational approach it is assumed that the posterior

factorizes between the variables to be inferred [3]:

p(C,W|Y) ≈ q(C) · q(W) (8)

where

ln q(C) = EW {ln p(Y, C,W)}+ const. (9)

ln q(W) = EC {ln p(Y, C,W)}+ const. (10)

With Equation (3) - (7) the following update equations

hold for the i-th iteration of the E-step (i = 1 . . . I):

ln γ
(i)
k (t, f) = κ

(i−1)
k EWk

{
W

H
k Y(t, f)YH(t, f)Wk

}

− lnM(1, D, κ
(i−1)
k ) + ln(π

(i−1)
k ) + const., (11)

B
(i)
k = κ

(i−1)
k N

(i)
k Φ

(i)
Y Y,k +B0,k, (12)

where

N
(i)
k =

T∑

t=1

F∑

f=1

γ
(i)
k (t, f), (13)

Φ
(i)
Y Y,k =

1

N
(i)
k

T∑

t=1

F∑

f=1

γ
(i)
k (t, f)Y(t, f)YH(t, f). (14)
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Here, γ
(i)
k (t, f) = P (ck(t, f) = 1|Y) is the a posteriori class

probability, and B
(i)
k is the update of the Bingham parameter

matrix from the a priori knowledge B0,k after observing Y .

In the M-step the parameters are estimated as follows:

π
(i)
k = N

(i)
k /

K+1∑

k=1

N
(i)
k , (15)

M(2, D + 1, κ
(i)
k )

D ·M(1, D, κ
(i)
k )

= EWk

{
W

H
k Φ

(i)
Y Y,kWk

}
, (16)

where the latter is an implicit equation to determine κ
(i)
k .

Both, Equations (11) and (16) require the computation of

a quadratic moment of a Bingham-distributed mode vector.

Its solution is given in the appendix.

3. SOURCE COUNTING

If the VEM algorithm with K = νmax as the maximum

number of expected mixture components is used directly for

source counting, its performance strongly depends on the

initial placement of the mode vectors of the Bingham distri-

butions. Thus, the following approach is proposed to avoid

this dependency:

In the first iteration (ν = 1) observations Y(t, f) with

highest energy, i.e., A(ν)(t, f) := ‖X̃(t, f)‖ > quantile(q),
are chosen to form a subset Y(ν), thus yielding a very basic

speech activity detection. This criterion is similar to the am-

plitude criterion presented in [11] and is meant to select ob-

servations where the sparseness assumption is well fulfilled.

The VEM algorithm with one mixture component for a

speaker and one mixture component for noise executed on

this subset yields an updated a posteriori Bingham parameter

matrix Bν , and an estimate for the Watson concentration pa-

rameter κν for the first speaker. The mode vector Ŵν is the

principal component of Bν .

Inspired by [12], the energy of each time-frequency slot

is weighted in the next iteration (ν ← ν + 1) to suppress

observations from already found source directions:

A(ν)(t, f) = A(ν−1)(t, f) ·
(
1− e|ŴH

ν−1
Y(t,f)|−1

)
, (17)

and the VEM algorithm is applied on this modified signal.

Algorithm 1 Source counting algorithm

1: Calculate A(1)(t, f) = ‖X̃(t, f)‖
2: for ν = 1 . . . νmax do

3: if ν > 1: then Use Equation (17) end if

4: Select observations Y(ν) with A(ν) > quantile(q)
5: Use VEM algorithm with Ŷ(ν) to calculate Bν , κν

6: Calculate principal component Wν = P (Bν)
7: end for

8: Calculate sν = max
ν′=1...ν−1

|WH
ν Wν′ | ∀ν = 2 . . . νmax

9: Count iterations where κν>κTh ∧ πν>πTh ∧ sν<sTh

This procedure is repeated until a maximum number of

iterations νmax is reached. The number of speakers is then

given by the number of iterations in which the VEM delivers

a concentration parameter above a threshold κTh, the weight

is above a threshold πTh and a mode vector that indicates a

spatial direction that is sufficiently different from those of the

already found mode vectors. The latter is tested by comparing

the absolute value of the scalar product between mode vectors

to a threshold sTh. Algorithm 1 summarizes the iterative pro-

cedure.

4. SIMULATIONS

Simulations have been performed with K = 1 . . . 6 sources

placed uniformly on 6, 8 or 10 fixed positions on a circle of

radius 1m around an array consisting of D = 4 sensors in a

tetrahedral shape with 2 cm edge length in a non-reverberant

room of dimensions 4m × 4m × 3m. This yields a mini-

mal angular distance of θmin = 60◦, 45◦ and 36◦, respec-

tively. The sources and the sensor array share the same height

of 1.5m although our sensor configuration allows arbitrary

heights. The speech signals are 5 s signals from the TIMIT

database with a sampling rate of 16 kHz to which white Gaus-

sian noise at 10 dB SNR is added at each sensor. The STFT

frame size is set to 1024 with a frame shift of 256.

The Bingham prior is uninformative: B
ν
0 = 0. The

threshold for the scalar products is set to sTh = 0.7, which

corresponds to a minimum angle between two mode vectors

of 30◦. The performance is sensitive with respect to this pa-

rameter since it is related to spacial diversity of the sources.

The threshold for the Watson concentration parameters is set

to κTh = 1, representing a nearly uniform distribution which

is most likely not caused by a speaker.

The threshold πTh is set to 10−3 since this is the optimal

value for the EM algorithm. The differences to the VEM are

that the expectation operators are omitted in Equations (11)

and (16) and that the Update Equation (12) is not present. Fig-
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Fig. 2: Sensitivity with respect to threshold value for mixture

weight averaged over all simulated scenarios
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Fig. 3: Percentage of correctly counted number of active

speakers for EM and VEM algorithms

ure 2 points out that the threshold for the mixture weights has

a great influence on the EM performance whereas the VEM is

less sensitive. This renders the VEM algorithm more robust

since this threshold does not have to be tuned to a specific sce-

nario. Each EM/VEM algorithm has converged sufficiently

after I = 10 iterations.

Setting q = 90%, the subset Y(ν) contains all observa-

tions with A(ν)(t, f) > quantile(q). The simulation results

are averages over 500 simulations for each number of speak-

ers and each minimal angular distance.

Figure 3 shows the percentage of correctly counted sce-

narios, i.e., the percentage of simulations where the estimated

number was equal to the true number of active speakers. The

results obtained with the VEM algorithm are compared to an

EM algorithm without Bingham priors.

In Figure 3 it can be seen that the counting accuracy de-

creases with decreasing θmin, as expected. With θmin = 60◦,

thus meaning K = 1 . . . 6 sources are randomly positioned

on 6 places, the average counting accuracy achieved by the

VEM algorithm is 91% and it drops with a minimum angular

distance of 45◦ and 36◦ to 91% and 80%, respectively. For

the optimal choice of the threshold πTh the performance of the

EM algorithm is slightly better: 96%, 96% and 84%.

5. CONCLUSIONS

We proposed a variational EM algorithm for model selection

within complex Watson mixture models. We successfully ap-

plied this algorithm to the estimation of the number of active

sources in a speech mixture captured by a microphone array.

A simplified version using ML instead of MMSE estimates

was shown by simulations to be less robust.

The variational EM algorithm derived in this contribu-

tion paves the way for online blind source separation based

on complex Watson mixture models since a priori knowledge

about the Watson mode vectors is essential for recursive esti-

mators within this framework.

6. APPENDIX

We wish to compute the expectation EW

{
W

H
ΦW

}
over

a Bingham distributed random variable W. Exploiting the

invariance of the trace operator with respect to circular per-

mutations we obtain

EW

{
W

H
ΦW

}
= tr

(
ΦEW

{
WW

H
})

. (18)

Since the Bingham parameter matrix B is Hermitian it can

be decomposed into two unitary matrices and a diagonal ma-

trix B = UΛU
H. The integration variable W can now be

substituted by W = UW̃ where the Jacobian determinant

detJ = 1. This aligns the Bingham distribution with its

eigenvectors and thus decouples the components of W̃. The

normalization constant only depends on the eigenvalues of the

parameter matrix and thus B is substituted by Λ:

EW

{
WW

H
}
=

∫

W
H
W = 1

WW
Hc−1

B (B)eW
H
BWdW

= U

∫

W̃
H
W̃ = 1

c−1
B (Λ)W̃W̃

HeW̃
H
ΛW̃dW̃U

H.

(19)

Each element of the above integral may now be treated

separately:
ei,j = c−1

B (Λ)

∫

W̃
H
W̃ = 1

w̃iw̃
∗
j e

∑D
d=1

λd|w̃d|
2

dW̃. (20)

Kent’s polar coordinate transformation with sd = |w̃d|
and θd = arg (w̃d) yields an integral region for s defined by

the standard (D − 1)-simplex

∆D−1 =

{
s ∈ R

D :

D∑

d=1

sd = 1 ∧ sd ≥ 0

}
. (21)

The former integral bound W̃
H
W̃ = 1 does not constrain

the phases θd and thus θd ∈ [0, 2π[. The Jacobian determinant

is given by detJ = 2−D [13]:

ei,j = c−1
B

∫

∆D−1

∫

[0, 2π[D

√
sisje

jθiejθje
∑D

d=1
λdsd2−Ddθds. (22)

From
∫ 2π

0
ejθidθi = 0 it follows that all cross terms van-

ish: ei,j = 0 for i 6= j. In the case of i = j the phase terms

cancel each other and the integral for θ reduces to the volume

(2π)D:
ei,i =

(2π)D

2D
c−1
B (Λ)

∫

∆D−1

sie
∑D

d=1
λdsdds. (23)

A further substitution with s1 = s̃1, . . . sD−1 = s̃D−1,

sD = 1−∑D−1
d=1 s̃d with the Jacobian determinant detJ = 2

yields an integration region equal to the set of vectors LD−2

between the standard (D−2)-simplex and the coordinate axis

where the integral is basically the mean of a truncated multi-

variate exponentially distributed random variable s̃:

ei,i =

∫

LD−2

s̃i 2π
Dc−1(Λ)e

∑D
d=1

λds̃d

︸ ︷︷ ︸
p(s̃;Λ)

ds̃ = Es̃i {s̃i} . (24)

The mean of a truncated multivariate exponential distribution

is given by [13]:
Es̃i {s̃i} = c−1

B (Λ)
∂cB(Λ)

∂λi

. (25)
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