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ABSTRACT

This paper studies the challenging problem of detecting a low
radar cross-section target in heavy sea clutter by proposing a
physics-based sea clutter generation model. The model includes
a process that generates random dynamic sea clutter based on the
governing physics of water gravity and capillary waves and a finite-
difference time-domain electromagnetics simulations process based
on Maxwells equations propagating the radar signal. A subspace
clutter suppression detector is considered to remove dominant clut-
ter eigenmodes. The improved detection performance over matched
filtering is demonstrated using sea clutter model simulations.

1. MOTIVATION AND RELATION TO PRIOR WORK
The detection and tracking of small targets on the sea surface is dif-
ficult as strong scattering from the sea can mask weaker target re-
flections. In particular, at low grazing angles and high sea states,
transmitted signals with bandwidths large enough to observe reflec-
tions from breaking waves and sea spikes can result in low signal-
to-clutter ratios (SCRs) [1]. In such heavy sea clutter scenarios, the
detection performance deteriorates and the targets cannot be realisti-
cally tracked. Increasing the received signal power through antenna
gain, transmitter power, and pulse Doppler processing may not im-
prove detection as sea clutter returns consist of the transmitted signal
undergoing small Doppler shifts relative to the target.

One approach to improving target detection performance at low
radar cross-section (RCS) is by accurately modeling the sea clut-
ter statistics. This was demonstrated in prior work using the com-
pound Gaussian model that relates back to the physical sea clutter
phenomenology [2]. The model assumes that the sea clutter return
consists of speckle and texture components. The speckle return is
primarily a function of small-scale capillary waves forming a large
number of independent scattering from the incident signal. The tex-
ture is a function of the large-scale gravity waves; it is assumed to
modulate the local mean power of the speckle return, while exhibit-
ing spatial correlation based on the range resolution, sea state, and
wind speed [3]. The compound Gaussian model has been validated
using real sea clutter data, and has been used to construct improved
detectors and configure waveforms [4–6].

In our paper, we present a physics-based sea clutter generation
model based on an electromagnetic simulation of gravity and capil-
lary waves evolving through time. By computing radar returns from
the simulated sea surface and low RCS target scattering, we utilize
the statistical variation of the returns to separate the target from the
clutter and thus improve target detection performance. We specif-
ically compare the performance of a matched filter detector to that
of a subspace clutter suppression detector [6]. The subspace clut-
ter suppression detector is an eigenmode analysis algorithm that ex-
ploits the statistical independence of clutter compared to the target
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of interest [7, 8]. As we demonstrate, this detector can separate and
suppress clutter from the radar returns, significantly improving SCR
and detection performance.

This paper is organized as follows. In Section 2, we propose the
sea clutter generation model with the random dynamic sea surface
and finite-difference time-domain simulations process models. Sec-
tion 3 uses the sea clutter model to investigate the performance of a
subspace clutter suppression detector. In Section 4, model parame-
ters are varied to provide detection performance comparison results.

2. PHYSICS-BASED FDTD SEA CLUTTER SIMULATION
The sea clutter generation model includes two main processes. The
first process is the generation of a three-dimensional (3D) random
dynamic sea surface that moves according to the governing physics
of water waves as driven by the wind; the waves include gravity
waves whose restoring force is gravity, and capillary waves whose
restoring force is water surface tension. The second process includes
2D finite-difference time-domain (FDTD) simulations. It is based
on using Maxwell’s equations to propagate radar pulses through the
FDTD domain, where the incident electromagnetic (EM) field im-
pinges on the sea surface and scatters. The implementation of a tele-
portation window [3] in the FDTD simulations separates the scatter-
ing field or clutter from the total field; it is then propagated to the
far field and collected for processing. The 2D FDTD simulations in-
volve individual radar pulses incident on single cuts of the dynamic
3D sea surface. The sea is modeled as a perfectly conducing surface
(water cells are perfect electric conductors). As the radar pulse du-
ration is on the order of ns, the surface is a static snapshot during
each pulse simulation but is propagated in between simulations of
subsequent pulses according to the pulse repetition time. For a sin-
gle radar pulse, multiple down-wind cuts of the 3D sea surface are
simulated. These cuts are strategically spaced in the cross-wind di-
rection in an attempt to collect scattering samples of the 3D sea and
capture scattering across the radar footprint area on the sea surface.
The superposition of radar backscatter collected from the multiple
down-wind sea cuts constitutes quasi-3D sea clutter. The features of
the sea surface are developed in stages: incorporating 2D static grav-
ity waves and developing a capillary waves model, implementing a
spreading function to expand into 3D, and superimposing the capil-
lary waves on the gravity waves while mathematically giving each
random wave its respective phase velocity.

The gravity waves component of the 2D sea surface are gener-
ated as described in [9]. The height f(yn) of the 2D sea surface at
points yn along the surface is given by

f(yn) =
1

L

N/2−1∑
m=−N/2

F (Km) exp (jKmyn) (1)

where F (Km) =
√

2πLW (Km)Rm, Rm is a zero-mean, unit-
variance Gaussian random variable r(0, 1) for m= 0, N/2, and
Rm = ((r(0, 1) + jr(0, 1))/

√
2 for m= 1, . . . , N/2 − 1. The

function W (Km) = (α/(4|Km|3) exp (−β g2/(K2
m U4)) is the
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Pierson-Moscowitz (P-M) sea spectrum [10], where L is the sea
surface length in m, N is the number of surface sampling points,
Kn = 2π/Λn is the wave number of the ocean wave, Λn is the
ocean wave wavelength, β = 0.74, α= 0.0081, g = 9.81 m/s2 is the
gravitational constant, and U is the wind speed in m/s.

The slope of the gravity waves versus time at any point on the
sea surface is proportional to the amplitude modulation of the clut-
ter (or the clutter texture) returning from that point of the sea, so it
is vital that the instances of gravity waves are generated correctly.
In order to verify that the gravity waves model is correct, we simu-
lated 2D FTDT incident EM plane wave illumination on our gravity
wave surface f(yn). The parameters of the EM simulations were
chosen based on information found in previous work. The proper
discretization of the P-M sea surface, to capture scattering from rel-
evant details of the sea, is given in [11]. We chose an extreme case
to reproduce for generating the far field scattering from large details
of the sea (gravity waves), following an FDTD simulations study
in [12]. The sea details of interest are relatively large gravity waves,
with a sea state of 7 (wind speed of 20 m/s) and a significant wave
height of roughly 6 m. Thus, to capture details of this size, the free
space EM illumination wavelength is chosen as λ0 = 7.49 m. The sea
surface is sampled at λ0/16 intervals. The discretization cell in our
FDTD space is λ0/16, and the plane wave EM illumination angle
of incidence is 20 degrees above the horizon. Using these settings,
we simulated 40 independent, completely decorrelated, random in-
stances of the gravity wave surface of total length 160λ0 m.

The scattering from the gravity waves is propagated to the far
field over the horizon, where evidence of the changing slopes of
larger gravity waves can be seen from one instance of sea to the
next. The far field scattered intensity of 3 instances and the average
of 40 instances (black curve) are shown in Figure 1. These results

Fig. 1. Far field of 2D gravity waves.

demonstrate that we have a valid simulation of large realistic sea sur-
face details in the EM environment using the FDTD computational
EM method. The results also show that the 2D gravity wave surface
is correctly generated.

To include the smaller details of the sea surface, we develop an
energy spectrum to generate capillary waves in the same manner that
the P-M spectrum is used to generate gravity waves. The spectrum
is obtained using results from other capillary wave studies. We first
estimate an exponential function that relates the wind speed U and
capillary wave wavelength Λ [13]. The total kinetic and potential
energy of water waves is given by E = ρπA2, where A is the wave
amplitude and ρ is the density of water [14], and the amplitude of
the capillary wave of greatest height is 2A= 0.73Λ [15]. Using these
relations, we estimate the energy spectrum for capillary waves using

w(Kn) = (4αcρπ
3U/|Kn|2) exp (−(KB − βcKn)/(β2

cKn))2 ,

where KB = 2π/ΛB , ΛB is the wavelength boundary between grav-
ity and capillary waves, αc = 0.0445, and βc = 0.6. This expression

does not account for other phenomena such as the effect of the local
gravity wave slope and the angle of incidence of the local wind and
instantaneous wind speed. However, it yields roughly the correct
capillary wave heights based on experimental data [13] and is suit-
able for our study. Note that, although capillary and gravity waves
are generated by the same approach, we continuously change the
random number sets to prevent repeating capillary wave patterns.

The waves are propagated using the phase velocity equation [14]

v2p =
T

ρ
K +

g

K
, (2)

were T is the surface tension per length, ρ is the water mass density,
g is gravity acceleration, K = 2π/Λ is the water wave number, and
Λ is the wavelength of the water wave. The first and second terms in
(2) correspond to the velocity of capillary waves and gravity waves,
respectively. Each wave is given a phase velocity φn =Knyn−ωnt,
following (2), where ωn = (|Kn|2(TKn/ρ+g/Kn))0.5. To expand
to 3D surface, we implement a spreading function as in [16]. Super-
imposing the moving capillary waves on the moving gravity waves
results in the full dynamic and random 3D realistic sea surface.

The speckle component of sea clutter is backscatter from capil-
lary waves. A simple test to demonstrate that our capillary weaves
scatter clutter in as similar fashion as the real sea is to calculate the
Pearson’s correlation coefficient of the first returning clutter pulse
with all returning pulses. If the capillary waves have the correct mo-
tion, the speckle component of the clutter decorrelates in the time
that real sea speckle decorrelates, which is on the order of 10 ms.
For this test, in order to best observe the capillary waves, we chose
to use X-band radar, since the EM wavelength is on the order of the
capillary wave wavelength and amplitude. We simulated 100 radar
pulses incident on a single cut of time-varying 3D sea, using 1 ms
pulse repetition time, to capture the effect of the clutter. The corre-
lation results are plotted in Figure 2, which shows that the speckle
decorrelated in approximately 15 ms.

Fig. 2. Decorrelations of the radar returns from the simulated sea
clutter occur over approximately 15 ms.

3. DETECTION METHODS
We consider a radar system for detecting a target in heavy sea clut-
ter. The target is assumed to have low radar cross-section due to
its actual size and its relative size in relation to the wavelength of
the illuminating radar. We assume that the radar system transmits a
pulse train of K identical pulses, s(t), which scatter off sea surface
scatterers, and if present, the target. The two detection hypotheses
describing this scenario for the kth transmit signal, k = 1, 2, . . . ,K,
and the ith sea surface scatterer are given by

H0 : xk(t) =
∑
i

ak,i s(t− ti) + w(t)

H1 : xk(t) = bk s(t− t0) +
∑
i

ak,i s(t− ti) + w(t) .

Under hypothesis H0, we assume that that received signal consists
of multiple scatterers with complex scattering coefficients ak,i and
time delays ti and white Gaussian noisew(t). Under hypothesisH1,
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we assume that, in addition to the scatterers and noise, the target is
also present with a scattering coefficient bk at time delay t0. In both
hypotheses, the signals are sampled using as sampling period Ts to
yield the discrete time sequence xk[n] =xk(tTs), n= 0, . . . , N − 1.
For the rest of the paper, we assume that the clutter-to-noise ratio is
very high and that the effects of noise on detection can be ignored.

3.1. Generalized Matched Filter Detector
We derive the generalized matched filter (GMF) detector, that under
hypothesis H1, assumes that the discrete-time incident signal s[n]
is known and deterministic but the target time-delay is unknown.
After first estimating the time-delay using maximum likelihood esti-
mation, the GMF detector is obtained by maximizing the probability
of detection for a fixed false alarm rate. For our signal model, the
discrete-time matched filter output corresponding to the kth pulse at
the `th lag, `= 0, . . . , N − 1, with estimated n0, is given by

rk[`] = bkzs[`− n0] +

N−1∑
n=−(N−1)

zs[n] dk[n+ `] (3)

where the autocorrelation function of the transmit signal s[n] at lag `
is defined as zs[`] =

∑N−1
n=0 s[n]s∗[n− `], and dk[`] =

∑
i ak,i is the

aggregate scattering coefficient from all of the clutter scatterers that
fall within the `th range bin. The decision threshold γ is set based
on the distribution of rk[m] and by fixing either a desired value of
false alarm rate PFA or probability of detection PD.

3.2. Subspace Clutter Suppression Detector
The GMF detector is not expected to perform well for low RCS tar-
gets in heavy sea clutter. In such cases, the clutter is much stronger
than the signal, and for reasonable values of PD, the number of false
alarms is large. This is expected as matched filtering does not involve
clutter mitigation. The subspace clutter suppression (SCS) detector
decomposes the signal into subspaces consisting of mostly clutter or
mostly target energy. The detection performance is improved when
only the subspaces that are orthogonal to the clutter are processed.

We assume a Swerling I point target so that the complex reflec-
tivity b= [b1 b2 . . . bK ]H of the target for all K transmit pulses has
a zero-mean complex Gaussian distribution with covariance matrix
σ2IK , where IK is the (K ×K) identity matrix. For all K transmit
pulses, the matched filter output at the `th lag or range bin can be
written in vector form as

r` = b zs[`− n0] +

N−1∑
n=−(N−1)

dn+` zs[n] (4)

where r` = [r1[`] r2[`] . . . rK [`]]H, H denotes complex transpose,
and dn+` = [a1,n+` a2,n+` . . . aK,n+`]

H. The covariance matrix of
the matched filter output depends on both the target and clutter char-
acteristics, and it is given by

R` = E[r`r
H
` ] = E[bbH]|zs[`− n0]|2

+

N−1∑
n=−(N−1)

N−1∑
l=−(N−1)

E[dn+` d
H
l+`] zs[`] zHs [l] .

The matrix can be re-written in the form of the compound Gaussian
sea clutter model as

R` = σ2IK |zs[`− n0]|2 +

N−1∑
n=−(N−1)

Φ Ln+` |zs[n]|2 (5)

where Φ is the speckle covariance matrix and L` is the sea clutter
texture component.

Some existing detection methods use the above formulation to
estimate the texture and speckle clutter components for use in a gen-
eralized likelihood ratio test. While a reasonable approach, estimat-
ing the texture and speckle clutter components is computationally
intensive, and it is often performed using expectation maximization
or another iterative method. A less computationally intensive ap-
proach, that also yields reasonably good results, estimates sample
covariance matrix from the data in all the range bins in one coherent
processing interval as

R =
1

N

N−1∑
`=0

(r` − r̄`)(r` − r̄`)
H (6)

where r̄` is the mean value of r` at the `th lag. To suppress the clut-
ter from the received signal, we decompose R into the eigenvector
matrix Q and diagonal eigenvalue matrix D to obtain R=QDQH,
where we assume that the eigenvalues along the diagonal of D are
sorted in descending order. The eigenvector matrix Q is also sorted
according to the ordered eigenvalue matrix.

Negative signal-to-clutter ratio (SCR) values imply that the
larger eigenvalues and associated eigenvectors are due to sea clutter
and define the eigenvectors that we want to suppress. We form a
matrix Qc from the J < K eigenvectors of Q whose columns are
associated with the smallest J eigenvalues of R. The projected sig-
nal onto the signal subspace is given by QcQ

H
c r`; this is the clutter

suppressed signal that results in a larger SCR than r`. Using the
clutter suppressed signal for target detection results in an improved
detection performance when compared to that of the GMF detector.

4. SIMULATION RESULTS
In order to evaluate the performance characteristics of the GMF and
SCS detectors across a range of SCRs, we need to vary the strength
of the clutter and target reflections. Varying these parameters is
straightforward when clutter realizations are simulated using the
compound Gaussian model or any other statistical model. However,
this is not the case when using our proposed sea clutter generation
model, The data generated from the physics-based FDTD model is
controlled by physical properties of the sea surface (such as the size
and shape of the waves), the target (such as the size of an object),
and the radar (such as the radar beamwidth). While we have direct
control over the strength of the clutter and target reflections, we do
not know the exact numerical value of the SCR. This is because the
reflected signal is a combination of both direct reflection from the
target as well as delayed reflections from the sea surface; this makes
it difficult to calculate just the target component or just the clutter
component of the received signal.

As we cannot control the numerical SCR values, we cannot spec-
ify the exact detector performance, such as the probability of de-
tection versus the probability of false alarm, for a given SCR. We
can, however, evaluate the detector performance for relative ranges
of SCR values, that is simulate scenarios for relatively larger or
smaller SCRs. In order to accomplish this, we keep all parameters
but one constant, and then we vary that one parameter to affect the
SCR. In the following simulations, we hold the target size and radar
beamwidth constant but increase the size of the waves resulting in
varying SCR values. We consider three such scenarios to illustrate
the detector performance across a wide range of SCRs. The first two
scenarios show detection performance for negative SCR values: we
denote the corresponding SCR values of the two scenario as SCR1

and SCR2, respectively. We varied the parameters such that SCR2

is lower than SCR1. The receiver-operating characteristic (ROC)
curves, demonstrating probability of detection PD as a function of
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the probability of false alarm PFA, for the GMF and SCS detectors
SCR1 and SCR2 are shown in Figure 3. As expected, the SCS detec-
tor outperforms the GMF detector. The other notable result is that,
while increasing the SCR decreases the performance of both detec-
tors, the performance of the SCS detector degrades at a slower rate
than the GMF detector.
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Fig. 3. ROC curves comparing the performance of the subspace clut-
ter suppression (SCS) detector and the generalized matched filter
(GMF) detector using SCR values SCR1 > SCR2.

In the third scenario, we used the positive SCR value SCR3 and
the ROC curves comparing the GMF and SCS detectors are shown
in Figure 4. In this case, the detection performance of the GMFD is
higher than the one for the SCS detector. Note that this result is ex-
pected since at higher SCR values, the largest eigenmode consist of
target energy and not clutter; suppressing the largest eigenmodes re-
sults in decreasing the SCR and thus the SCR detector performance.
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Fig. 4. ROC curves comparing the performance of the SCS and GMF
detectors using SCR3 value.

The simulated results shown in Figures 3 and 4 use the sea clut-
ter generation model with K=31 pulses; for the SCS detector, only
the first eigenmode was suppressed (J=30). The number of clutter
eigenvectors is data dependent and is often chosen by looking for an
abrupt drop-off value in the eigenvalue amplitude from the ordered
list of eigenvalues. For K=31, this drop-off value occurred after
only one eigenvalue. We expect that for larger values of K, more
than one clutter eigenmode would need to be suppressed. However,
as in this set of simulations we considered a constant pulse repeti-
tion frequency, larger values ofK resulted in poorer detection statis-
tics because the sample covariance matrix was then computed from
decorrelated sea clutter data.

5. CONCLUSION
This paper proposed a novel sea clutter generation model for sea
clutter using a 3D random dynamic sea surface with a capillary wave

model. The capillary wave model included capillary waves with
gravity as the restoring force as well as capillary waves where the
restoring force is the water surface tension. The generation model
includes 2D finite-difference time-domain (FDTD) sea clutter simu-
lations. We investigated a simple matched filter detector and a sub-
space clutter suppression detector, and we used the FDTD simula-
tions to compare the performance of the two detectors.
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