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ABSTRACT

In real-word applications, signal processing is often used to
measure and control a physical field by means of sensors and
sources, respectively. An aspect that has been often neglected
is the optimization of the sources’ locations. In this work,
we discuss the source placement problem as the dual of the
sensor placement problem and propose two polynomial-time
algorithms, for scenarios with or without noise. Both algo-
rithms are near-optimal and indicate the possibility to make
the control of such physical fields easier, more efficient and
more stable to noise.

Index Terms— Sensor placement, Inverse problem,
Source placement

1. INTRODUCTION

Many real-world signal processing problems involve the sens-
ing and the control of a physical field. A simple example is
the temperature in a building: we measure it with a sensor
network and we control the sources, i.e. the heaters, to have a
desired temperature distribution. In these scenarios, we face
several joint problems, such as:

• the control of the physical field,
• the sampling of the physical field in certain locations

using a set of sensors,
• the reconstruction of the physical field from the mea-

surements.

These problems already received significant attention in
the literature because of their fundamental role. However,
there are two aspects that are often neglected and may signif-
icantly impact the performance of the system: the optimiza-
tion of the sensors’ locations, to improve the reconstruction of
the physical field from the measurements, and of the sources’
locations, to improve the control of the physical field itself.
While the first problem has recently received some attention
[1–4], the second one is rarely discussed in the literature.
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Fig. 1. A graphical representation of the source placement
problem where S is a 2-dimensional subspace of R3 and we
have to choose between 5 source indicated by the vectors ψ.

1.1. Problem Statement

In this paper, we state the source placement problem as the
dual of the sensor placement problem, that is described in [2].
More precisely, we consider a discrete physical field f ∈ RN

and we define a K-dimensional subspace S ⊆ RN represent-
ing all the f that we would like to enforce with the sources.
We consider a set of M sources’ positions and each source
acts linearly on the physical field. Therefore, we model the
source-field relationship as,

f = Ψα, (1)

where α ∈ RM are the sources’ intensities and Ψ ∈ RN×M

is a linear model representing the action of the sources. A
graphical representation of the problem is given in Figure 1.

Now, assume that we cannot use all the sources and we
must choose a subset L of L sources to represent the subspace
S. We obtain a pruned matrix ΨL ∈ RN×L and a pruned
source vector αL ∈ RL,

f = ΨLαL, (2)

where the subscript L indicates that we kept the sources in-
dexed by L. Two questions regarding the choice of L arise:

1. How do we choose the L sources?
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2. Which cost function shall we consider to evaluate the
quality of the chosen subset?

First, we note that the problem of source selection is
equivalent to choose a set of L columns from Ψ such that
the desired cost function, usually related to the spectrum
of Ψ, is optimized. Then, we note that source selection is
intrinsically combinatorial, as many other subset selection
problems. In fact, we need to test all the

(
N
L

)
possible sources

subsets to find the optimal one. Therefore, we look for an
approximation algorithm that reaches a sub-optimal solution
with guaranteed quality and computable in polynomial time.
The guarantee is often expressed with the concept of near-
optimality and is measured by the approximation factor, a
multiplicative factor bounding the worst-case distance from
the optimal solution. For example, a minimization algorithm
with an approximation factor of 2 always generates a solu-
tion whose cost function is at most two times larger than the
optimal solution.

In what follow, we identify two different scenarios differ-
entiated by the presence of noise. As in other signal process-
ing problems, such difference leads to different algorithms,
considered cost functions and results.

1.1.1. Noiseless source placement

If the target field f is noiseless, we recall the source place-
ment problem as finding the set of columns of Ψ that spans
the subspace that approximates S as precisely as possible. In
other words, we have the following problem.

Problem 1. Consider a K-dimensional subspace S ⊆
RN and a matrix Ψ ∈ RN×M . Given the number of
sources L, find the source placement L such that the error
IEf

[
‖f − PΨLf‖22

]
is minimized, where PΨL is the linear

operator projecting f onto the subspace spanned by ΨL.

Note that we must define a probabilistic distribution for
f . In this paper, we consider f = ΦSx, where ΦS is a basis
for the subspace S and x is a set of i.i.d. Gaussian random
variables with unit variance.

1.1.2. Noisy source placement

Consider a given target field f = ΦSx and a set of sources L,
where ΦS is a basis for theK-dimensional subspace S. More-
over, assume that an i.i.d. Gaussian noise w is corrupting f
with a variance σ2, due to reconstruction error of the actual
state of the physical field. The noise perturbing f propagates
to the estimated sources and complicates the control of the
physical field.

We aim at finding the sources αL such that the produced
physical field f̃ minimizes the `2 distance ‖f − f̃‖2.

If L ≥ K and rank (Φ†SΨL) = K, we estimate αL as

α̃L = ΨL
†f = (Ψ∗LΨL)−1Ψ∗Lf , (3)

where † indicates the Moore-Penrose pseudoinverse. Then, if
ΨL spans S, the error in the generated field is equal to,

‖f − f̃‖22 = σ2
K∑
i=1

1

λi(PSΨL)
(4)

where λi(PSΨL) is the i-th eigenvalue of PSΨLPS
∗ΨL

∗ and
PS is the projection operator onto the subspace S. Finally, we
characterize the noisy source placement problem as follows.

Problem 2. Consider a physical system modeled as Ψ ∈
RN×M and a subspace S ⊆ RN . Assume that the target
fields f ∈ S are corrupted by i.i.d. Gaussian noise w with
variance σ2. Find the source location L such that (4) is min-
imized ∀f ∈ S.

1.2. Contributions

In this paper, we present two algorithms that solve respec-
tively Problem 1 and 2, have a polynomial complexity and are
near optimal w.r.t. the chosen cost function. More precisely,

• for Problem 1, we propose an algorithm that greedily
minizes the distance between the subspace achieved by
the sources and S and is near-optimal in terms of the
approximation error with the subspace spanned by ΨL,
• for Problem 2, we propose a greedy algorithm based on

the frame potential [5] that, under given conditions on
Ψ and S, is near optimal w.r.t. (4).

1.3. Literature Review

Up to the author’s knowledge, the problem of source place-
ment is new and has never been studied, at least in the sig-
nal processing community. However, there are four problems
that are closely related: sensor placement, dictionary learn-
ing, dictionary selection and dimensionality reduction.

In the first problem, we attempt to choose L rows from a
matrix Ψ ∈ RN×M with N > L ≥M such that the recovery
of a vector of parameters α ∈ RM from f = ΨLα is more
stable to noise. This problem is equivalent to finding the L
rows that forms the ΨL closest to a tight frame. The details
of such a problem and near-optimal algorithmic solutions are
given in [2]. Since it is very hard to optimize (4) due to the
presence of many local minima with arbitrarily bad perfor-
mance, the literature regarding the sensor selection problem
is centered around the choice and the analysis of proxy func-
tions that are both efficiently optimized by approximation al-
gorithm and able to indirectly optimize (4). Example of proxy
cost functions are mutual information [3], entropy [6], R2 [7]
and frame potential [2].
The sensor placement problem is extremely similar to the
noisy source placement, the main difference being the pos-
sibility of the latter to define a subspace S instead of RN .

In dictionary learning, we learn a dictionary ΨL ∈ RN×L

such that a set of P given test vectors F = {f0,f1, . . . ,fP }
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are precisely represented, usually under a sparse prior. Note
that dictionary learning differentiates from source placement
for two principal aspects: the reference is not a given sub-
space but a set of vectors F and we can freely optimize the
dictionary elements without being forced to pick them from
Ψ. See [8] for a review of such topic.

In dictionary selection, we form a dictionary ΨL ∈
RN×L by choosing L columns out of the M available
ones in Ψ ∈ RN×M such that a set of P given test vec-
tors F = {f0,f1, . . . ,fP } is precisely represented, usually
under a sparse prior. Dictionary selection is very similar to
source placement, the main difference being the optimization
target: a subspace S ⊆ RN for source placement and a set
of vectors F for the dictionary learning. The two options are
equivalent when the elements of F are lying on S. If this is
not the case, we may require a different optimization strategy,
such as one promoting a sparse representation. See [9] for a
detailed problem statement and a state-of-the-art solution.

Another similar problems is dimensionality reduction,
where we usually attempt to approximate a set of vectors
F with a K-dimensional manifold. A classical example of
such a technique is principal component analysis, where we
find the K-dimensional linear subspace that minimizes the
`2 error w.r.t. F . Note that the noiseless source placement
is a principal component analysis constrained to select the
components from a matrix Ψ instead of learning them from
the available data.

In this paper, we make extensive use of the theory study-
ing the greedy optimization of submodular functions. In par-
ticular, we use the result of Nemhauser et al. [10] that proves
the near-optimality of algorithms based on a greedy maxi-
mization procedure.

2. A NEAR-OPTIMAL ALGORITHM FOR THE
NOISELESS SOURCE PLACEMENT

In this section, we present an approximation algorithm that
solves Problem 1 in polynomial time while being near-
optimal w.r.t. the average approximation error,

IEf

[
‖f − PΨLf‖22

]
, (5)

wherePΨL is the projection operator on the subspace spanned
by ΨL. Here, we assume f = ΦSx with x being a set of
i.i.d. random Gaussian variables with zero mean and unitary
variance.

The proposed algorithm removes at every iteration the
source that maximally reduces the approximation error (5)
and its details are given in Algorithm 1. It is a near-optimal
algorithm w.r.t. (5) and to prove such characteristic, we first
show that the chosen cost function is supermodular, i.e. the
negated cost function is submodular.

Proposition 1. The cost functionF (A) = IEf

[
‖f − PΨAf‖22

]
is decreasing and supermodular with A.

Proof. First, we know that the rank of the projection operator
PΨA is equal to the rank of ΨA. Moreover, we can show that

F (A) = IEf

[
‖P⊥,ΨAf‖22

]
=

R∑
i=1

|〈f ,vi〉|2, (6)

where P⊥,ΨA is the orthogonal projection on the complement
of the space spanned by ΨA, vi are the eigenvector of such
projection and R = N − rank(ΨA) is the dimension of the
complement space to A. Assume that an initial set A is given
and consider i to be another element that we can add to A.
According to (6), we have two possible outcomes when we
add a new element to A:

• rank(ΨA) increases by one, we loose the i∗-th eigen-
vector of P⊥,ΨA and F (A) diminishes by |〈f ,vi∗〉|2.

• rank(ΨA) and F (A) do not change.

Note that these outcomes indicate that the function F (A) is
always decreasing and supermodular. In fact, the function is
modular except when we add an element that does not in-
crease rank(ΨA), making it supermodular.

We can use Proposition 1 jointly with the theorem of
Nemhauser et al [10] to show the near-optimality of Algo-
rithm 1.

Proposition 2. Consider a matrix Ψ ∈ RN×M , a K-
dimensional subspace S and assume that we want to find
the L sources L minimizing F (L). Then, Algorithm 1 is
near-optimal and we can bound its performance as,

IEx

[
‖f‖22

]
− F (L) ≤

(
1− 1

e

)(
IEx

[
‖f‖22

]
−F(OPT)

)
,

where L and OPT are the set optimized by Algorithm 1 and
by an optimal algorithm, respectively.

The proof follows from the result given in [10]. Note that
Algorithm 1 has to be worst-out greedy algorithm to satisfy
the conditions given in Nemhauser’s theorem.

Finally, we explain how to compute F (A) without testing
all the infinite f ∈ S. Assume that f = ΦSx and x are i.i.d.
zero-mean Gaussian random variables with σ2 = 1. Then, it
is possible to prove the following equality,

F (A) =
∑
i∈A

R∑
j=1

|〈φi,vj〉|2, (7)

where φi is the i-th column of ΦS. In other words, it is just
possible to test each column of ΦS to compute exactly F (A).

3. A NEAR-OPTIMAL ALGORITHM FOR THE
NOISY SOURCE PLACEMENT

If the target field f is corrupted by noise, we are trying to
find a well-conditioned set of columns that spans S so that the
MSE of f (4) is minimized.
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Algorithm 1 Noiseless Source Placement
Require: Linear Model Ψ, Number of sources L
Ensure: Sources locations L

1. Initialize the available locations, L = {1, . . . ,M}.
2. Repeat until L locations are found

(a) If |L| = L, stop.
(b) Find the optimal column to remove, i∗ =

arg maxi∈L F (S ∪ i).
(c) Update the available locations, L = L \ i∗.

It is clearly a harder problem, but we may use some in-
teresting results derived in [2]. In particular, we derive an
algorithm that selects the columns by a greedy worst-out min-
imization of the frame potential (FP), that is defined as

FP(ΨA) =
∑
i∈A

∑
j∈A
|〈ψi,ψj〉|2, (8)

where ψi is the i-th column of Ψ. The details of the algo-
rithm are given in Algorithm 2 and in what follows we give
some results showing its near-optimality in terms of the MSE.
We do not prove the results here, given the limited amount of
space and their similarity to the proofs given in [2].

First, we use the supermodularity of the FP, proved in [2],
and the aforementioned result of Nemhauser et al. to show the
near-optimality w.r.t. the FP.

Theorem 1. Consider a matrix Ψ ∈ RN×M and a given
number of sources L, such that M ≤ L < N . Denote the op-
timal set of locations as OPT = arg maxA⊂N ,|A|=L FP(ΨA)
and the greedy solution found by Algorithm 2 as L. Then,
L is near-optimal in a FP sense with approximation factor
γ =

(
1 + 1

e

(
FP(Ψ) K

LMIN
2 − 1

))
, where LMIN is the sum of

the norms of the L columns with the smallest norm.

Second, we define the concept of (δ, L)-bounded frame, a
sufficient condition to prove the near-optimality of the MSE,
given the near-optimality of the FP.

Definition 1 ((δ, L)-bounded frame). Consider a matrix Ψ ∈
RN×M where N ≤ L < M . Then, we say that Ψ is (δ, L)-
bounded if for every A ⊆ N we have

λ̄− δ ≤ λi ≤ λ̄+ δ,

where 1 ≤ i ≤ K, λi is the i-th eigenvalue of ΨAΨ∗A, λ̄ is
their average and λ̄ > δ ≥ 0.

Note that the concept of (δ, L)-bounded frames can be re-
lated to the notion of RIP matrices used in compressive sens-
ing to guarantee the reconstruction of a sparse vector from a
limited number of linear measurements [11]. Moreover, it is
possible to prove that there exists random matrices satisfying

such condition but it is much harder to prove the existence of
deterministic matrices with such property.

We are now ready to state the near-optimality of Algo-
rithm 2, when Ψ is a (δ, L)-bounded frame.

Theorem 2. Consider a matrix Ψ ∈ RN×K and L ≥ K
sensors. Assume Ψ to be a (δ, L)-bounded frame, then the
solution L of FrameSense is near-optimal w.r.t. MSE with an
approximation factor η,

η = γ
(λ̄+ δ)2

(λ̄− δ)2
LMAX

LMIN
,

where η is the approximation factor of the MSE and γ is the
approximation factor of the FP.

The proof follows the one given in [2], with the difference
that we are selecting the columns instead of the rows.

Algorithm 2 Noisy Source Placement
Require: Linear Model Ψ, Number of sources L
Ensure: Sources locations L

1. Normalize the columns of Ψ to have unit-norm.
2. Initialize the available locations, L = {1, . . . ,M}.
3. Repeat until L locations are found

(a) If |L| = L, stop.
(b) Find the optimal column to remove, i∗ =

arg maxi∈L FP
(
ΨL\i

)
.

(c) Update the available locations, L = L \ i∗.

4. CONCLUSION

We studied the source placement problem as the dual of sen-
sor placement: a column selection out of a linear model Ψ.
We defined two problems differentiated by the presence of
noise and each problem optimizes a different cost function.
For the noiseless case, we proposed an algorithm that ap-
proximate any given subspace S using the span of a set L of
columns of Ψ and it is near-optimal w.r.t. the approximation
error. For the noisy case, we proposed an algorithm, based
on a previous work [2], that optimizes the frame potential as
a proxy of the mean-square error. Such an algorithm is near
optimal under a given condition on Ψ, but it can only deal
with the case S = RN .

Future work will consider the extension of Algorithm 2 to
a generic subspace. Such work will be centered on the defini-
tion of a cost function that promotes the choice of a subspace
that is close to S and it is formed by a set of columns that are
well-conditioned.
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