
OUTLIER REMOVAL FOR IMPROVED SOURCE ESTIMATION
IN ATMOSPHERIC INVERSE PROBLEMS

Marta Martinez-Camara, Martin Vetterli

School of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL),

marta.martinez-camara@epfl.ch
martin.vetterli@epfl.ch

Andreas Stohl

Norwegian Institute for Air Research,
(NILU),

ast@nilu.no

ABSTRACT

Estimation of the quantities of harmful substances emitted into the
atmosphere is one of the main challenges in modern environmen-
tal sciences. In most of the cases, this estimation requires solving
a linear inverse problem. A key difficulty in evaluating the per-
formance of any algorithm to solve this linear inverse problem is
that the ground truth is typically unknown. In this paper we show
that the noise encountered in this linear inverse problem is non-
Gaussian. Next, we develop an algorithm to deal with the strong
outliers present in the measurements. Finally, we test our approach
on three different experiments: a simple synthetic experiment, a con-
trolled real-world experiment, and real data from the Fukushima nu-
clear accident.

1. INTRODUCTION

Many of today’s environmental problems are related to emissions of
harmful substances into the atmosphere. The Fukushima nuclear ac-
cident, volcano eruptions, and greenhouse gases emissions are some
examples.

To predict the consequences of these emissions is a difficult but
crucial exercise. The main tool that we have for this task are the
atmospheric dispersion models.

The use of these models requires knowledge of the source term:
how much material was released, where and when. This informa-
tion is generally unknown. Hence, source estimation is an important
problem in its own right.

Various implementations of atmospheric dispersion models,
such as Lagrangian dispersion models (LDM) [1], permit us to
relate the source to the measurements in a linear way:

y = Ax+ e, (1)

where y is the measurement vector, x is the source term, A is the
model matrix and e is an additive error.

It is clear from (1) that estimating the source means solving a
linear inverse problem, which is essentially a signal recovery prob-
lem.

Most environmental scientists use a least squares approach with
Tikhonov (`2-norm) regularization, or variants of this method, to re-
cover an estimate x̂ of the source:

x̂ = argmin
x

‖Ax− y‖2 + λ‖x‖2, (2)
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where λ ≥ 0 is a regularization parameter.
For example, in [2, 3], Tikhonov regularization combined with

a smooth second derivative constraint is used. In [4] Tikhonov reg-
ularization with a non-negative constraint is used. A slightly dif-
ferent approach is the use of a sparsity constraint together with a
non-negative constraint as in [5].

All these approaches minimize the energy of the disagreement
between the model and the observations, while at the same time
keeping the energy of the solution in check. While this is a reason-
able approach, no metrics of real performance are (or can be) given
in most of these studies, simply because no knowledge of the ground
truth is available. This fact makes it impossible to evaluate the true
performance of any of these approaches.

1.1. Contributions

In this paper we use one of the rare cases where both the source and
the measurements are available to show that the Gaussian assump-
tion implicit in (2) does not hold. The noise is characterized by a
heavy-tailed, highly non-Gaussian distribution.

We show that solving the problem without using the measure-
ments associated with the largest errors improves the source recon-
struction, compared to using all the measurements. Hence, we pro-
pose a novel signal processing method to detect such measurements
blindly, tailored to this particular problem setting of environmental
inverse problems.

Furthermore, we show the improvement brought by the new
method in different setups: first on a toy problem using synthetic
data, and second on the real-world measurements from the controlled
experiment in [6]. In both cases we can observe clearly an improve-
ment over previous methods. Finally, we apply the new method to
the recovery of the source term of the Fukushima nuclear accident,
and discuss the findings.

2. NOISE CHARACTERIZATION

2.1. System model

Modeling and predicting the behaviour of the atmosphere is a com-
plicated task. Thousands of input parameters have to be taken into
consideration, and the propagation of errors in the model is an un-
avoidable fact. On the other hand, measurements are collected with
high quality instrumentation, but are still not perfect. These two dif-
ferent types of error - model and measurement errors - have very
different characteristics. The former is a multiplicative error, N, and
the latter an additive one, n. Taking both into account, the problem

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6870



can be reformulated as

y = (A+N)x+ n = Ax+ e (3)

where e is now the total error.

2.2. Controlled tracer experiment

Only a few controlled tracer experiment have ever been performed -
the most important ones in Europe and in the US. They are excep-
tional opportunities to study model and measurement errors, as well
as to test the various source recovery algorithms.

The ETEX experiment [6] was performed in France in 1994. A
greenhouse gas was released in a controlled fashion, and detected
by sensors placed in a radius of 1000 km around the source. Hence,
in this case we have access to the measurements y, the true source
x, and an estimation of the model A. This permits us to study the
errors N, n, and e.

Let us model the components ei of the vector e as random and
iid. We can approximate their empirical probability distribution by
plotting the histogram of the elements ei.
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Fig. 1. Histogram of the total error e. For clarity, the zero-error bin
has been omitted here.

Fig. 1 shows graphically that the error has a heavy-tailed distri-
bution. It can be appreciated in the histogram that the distribution
clearly deviates from a Gaussian one. This is confirmed by calcu-
lating the excess kurtosis of the sample distribution. The value of
g = 123.64 indicates that the underlying distribution is strongly
super-Gaussian.

Using the `2 norm in the loss function in (2) is optimal when the
residuals are Gaussian - which is not our case. Even worse, this loss
function is very sensitive to outliers - just like the ones present in the
heavy-tailed distribution shown in Fig. 1. Hence, the performance
of (2) and its variants could be improved by additional processing,
aimed at removing and/or marginalizing the outliers. In this paper
we propose and demonstrate a novel scheme for this additional pro-
cessing.

3. SOURCE ESTIMATION WITH COMPENSATION OF
MODEL ERRORS

Imagine that we have an oracle which identifies to us the measure-
ments corresponding to the largest errors (i.e. the outliers). If we

remove these measurements, the performance of (2) in terms of the
mean square error (MSE) improves significantly. In order to illus-
trate this, we have removed measurements associated with larger er-
rors (sorted in magnitude) in the ETEX experiment. Fig. 2 shows
how the MSE improves if we identify by hand these measurements
and remove them from the estimation process.
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Fig. 2. The MSE decrease as we remove more outliers.

However, in a typical real-world problem, we do not have such
an oracle. The question becomes: how could one locate the outliers
blindly? Robust statistics techniques such as Huber or bi-squared
loss functions [7] are used often to avoid the effect of outliers. Un-
fortunately, in our particular problem their performance is not robust
enough and does not improve the estimation accuracy. Also other
heuristic methods, such as RANSAC [8] are very popular, but their
combinatorial nature and the large size of our measurement datasets
makes them unusable in our problem.

A key observation we would like to make concerns the model
of the system, i.e. the matrix A. It is generated by environmental
scientists using meteorological data. Obviously, creating the model
using two different meteorological datasets will result in two slightly
different matrices. The key idea of this paper is that we can use the
variation between (two or more of) these matrices as an indication of
the uncertainty in the modelling process, and thus the likelihood that
a certain measurement is an outlier. Intuitively, if a particular entry
in the model matrix A varies significantly between different models
of the same process, it is likely to be estimated poorly. It will thus
likely cause a large entry in its element in N, which will increase the
entry in the corresponding element in e.

Let M1 and M2 be two model matrices generated with differ-
ent meteorological datasets. We can compute the matrix of absolute
differences as

D = |M1 −M2|. (4)

The accumulated differences in each row d, reveal the likelihood of
an outlier occurring in each measurement

d = D1, (5)

where 1 is a column vector whose entries are equal to one.
Our approach is to extend the original approach shown in (2) by

applying weights on the residuals, together with a non-negative con-
straint on the solution x̂. We give more weight to the most reliable
samples, and vice versa. Based on (5) we propose to use different
weighting schemes. We first consider exponential weights, such that

we = e−d, (6)
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where the exponentiation is an element-wise operation. An alterna-
tive weight function is to define thresholded weights as

wβ =

{
1

di+1
if di ≥ β

1 if di < β
(7)

where β is a predefined threshold.
Our problem can then be formulated as an outlier-weighted least

squares with a non-negative Tikhonov regularization:

x̂ = argmin
x
‖W(Ax− y)‖2 + λ‖x‖2 s.t. x � 0, (8)

where W is a diagonal weighting matrix whose main diagonal is
either we or wβ , and � is the component-wise inequality.

4. RESULTS

To illustrate our outlier mitigation algorithm, we employ it in three
different experiments: a simple synthetic example; a controlled ex-
ample using real-world measurements and models, and a real-world
experiment without knowledge of the ground truth.

4.1. Toy problem

In this section the measurements are generated using a model ma-
trix A ∈ R260×10 with random uniform entries and a piece-wise
constant source vector x (see, Fig. 3) as

y = Ax. (9)

We carry out several experiments; in each of them we build M1 and
M2 by changing some of the entries of A

M1 = A+N1

M2 = A+N2, (10)

where N1 and N2 are random sparse matrices. The goal is to recover
x using y and the matrices with errors M1 and M2.

These matrices are well conditioned. Hence, the Tikhonov regu-
larization term is not necessary. We recover x using traditional least
squares, as well as weighted least squares with the weights defined
in (6). We run (8) for different ratios of error entries in M1 and M2.
For each ratio, we perform 1000 simulations.

Fig. 3 shows the MSE for each ratio. Clearly, the weights im-
prove the overall performance and the best performance is achieved
using the exponential weights.

4.2. Controlled, real-data experiment

In the second example we used the ETEX experiment data [6] to
characterise the noise. We will use it to test the performance of our
method on real dataset (measurements and system model).

In this experiment 340 kg of a greenhouse gas were released at a
constant rate over a period of 12 hours. To build x, time is discretized
into 1-hour steps; in total we give x a window of 120 steps (5 days).

System model matrices are now generated using FLEXPART [1].
To generate both M1 and M2, we use as input to FLEXPART
two different atmospheric analyses: one generated by the ERA
40 database [9], and the other generated by the ERA INTERIM
database [10], both of them developed by the European Centre for
Medium-Range Weather Forecasts.

Using M1 and M2, the matrix of absolute differences, D, and
the accumulated sum for each row, d, are generated. They are shown
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Fig. 3. In the upper part of the figure we see the MSE in the toy
problem when the solution is recovered with and without weights. In
the lower part we can see the source that we use in the toy problem.
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Fig. 4. Matrix of differences (left) and accumulated row sum (right)
in the ETEX experiment.

in Fig. 4. We observe that the rows with larger accumulated sum of
differences can be clearly identified.

Using d we build the weights as per (6) and (7). We manually
adjust β to 3.5 times the average of d. This time around, the condi-
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Fig. 5. Comparison of the performance of three source estimation
algorithms: typical Tikhonov, and weighted Tikhonov with expo-
nential and thresholded weights.

tion numbers of both M1 and M2 are on the order of 1017. Hence,
we need to include the Tikhonov regularization term to recover x.

Fig. 5 shows the comparison of results using weighted and un-
weighted Tikhonov. As can be observed, also in this experiment, the
proposed algorithm improves the recovery. In this case, the thresh-
olded weights perform better than the exponential ones. However,
the use of the thresholded weights requires the adjustment of the pa-
rameter β, which might be difficult to set in practice.

4.3. Fukushima

Finally, we apply our method to a real accident: the Xenon-133
emissions during the Fukushima Daiichi nuclear accident which took
place in Japan in March 2011. The dataset that we use is the same as
the one used in [5]. In this experiment, one system matrix has been
generated using GFS data [11] and the other one using ECMRW
data [12].

We use exponential weights, because as discussed earlier, it is
not clear how to set β blindly. We compare the new reconstruction
with the one in [5] in Fig. 6.

The new reconstruction indicates that more material was emitted
on the first height level then previously thought. Also, it estimates
fewer but larger emissions and in general, it delays all the emissions.

5. CONCLUSIONS

In this paper we treated linear inverse problems for the estimation of
the source term using atmospheric dispersion models. We showed
that the error in these models is highly non-Gaussian. To cope with
this fact, we developed an algorithm to detect the outliers blindly
and marginalize them using appropriate weights. We demonstrated
the effectiveness of our approach on a simple synthetic example, as
well as on real measurements from a controlled experiment. In both
cases, our approach achieves a considerable improvement over ex-
isting techniques.
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Fig. 6. The dashed line represents the source recovered with the
presented algorithm using exponential weights. The solid line repre-
sents the sources obtained in [5]. The different heights correspond to
the different altitude of the emissions during the accident. The units
of the emissions are GBq/s
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