
TACTILE TOMOGRAPHIC FLUID-FLOW IMAGING WITH A ROBOTIC WHISKER ARRAY

Cagdas Tuna, Douglas L. Jones, and Farzad Kamalabadi

Department of Electrical and Computer Engineering and Coordinated Science Laboratory
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

ABSTRACT

Current sensory array systems do not fully exploit tactile
sensing strategies widely used by vibrissal sensing animals to
explore their surroundings. We develop a new tactile fluid-
flow imaging technique, which relates rat’s whisker move-
ments to tomographic imaging to extract fluid-flow charac-
teristics with a robotic whisker array. At high Reynolds num-
bers, the drag force on a whisker segment is proportional to
the relative velocity squared, and acts as a distributed load
along the whisker length. Therefore, we propose that it is
possible to map out the 2-D cross-sectional mean fluid-flow
velocity field with a robotic whisker array by measuring the
moment sensed at each whisker base from different directions
for tomographic reconstruction. The associated inverse prob-
lem for the tomographic image formation is formulated as a
MAP estimation problem and solved computationally. The
experimental results demonstrate that this new approach of-
fers a fundamentally novel sensor technology for flow-field
measurements.

Index Terms— Robotic whiskers, tomography, flow
imaging, tactile sensing, inverse problem.

1. INTRODUCTION

Whisking animals use tactile sensing as a key sensory mech-
anism for navigation and exploration of their surroundings.
Rats can extract object features and discriminate texture
through the oscillatory motion of their whiskers [1, 2]. Seals
use their whiskers to keep track of hydrodynamic trails gen-
erated by fish [3]. Shrews can detect and target their prey
in dark with their whiskers [4]. Tactile perception is the
principal sensory system particularly for the animals living
underground or in muddy, dark environments, where eyesight
fails; in other cases, it may also serve as a supplementary
information source to other sensory systems such as visual
sensing [5].

Biomimetic artificial whisker systems have become an
emerging research field in recent years as a result of the ex-
panding neurobiological knowledge about vibrissal sensing
of animals. Lungarella et al. [6] and Fend et al. [7] devel-
oped artificial whisker systems based on the power spectral
density analysis of the signal measured from whisker sensors

for texture discrimination, inspired by the rat somatosensory
system. Pearson et al. [8] and Fox et al. [9] have constructed
advanced active touch robotic systems for shape recogni-
tion, texture discrimination and navigation, inspired by the
neural-processing of the rat’s whisker control. Solomon and
Hartmann designed a whisker array for the tactile extraction
of three-dimensional object shape by taking lateral slip and
surface friction into consideration [10–12]. They also tested
two opposing whisker arrays in order to extract the velocity
profile of a stream of air moving towards the center of the
whisker array, producing single estimates of the flow velocity
at a given height, but not reconstructing a full 2-D cross-
sectional image of the fluid-flow field [12]. Therefore, the
high-resolution recovery of the 2-D cross-section of the mean
fluid-flow velocity using tactile sensing remains an impor-
tant unsolved challenge that would enable an essentially new
sensory mechanism for flow-field measurements.

In this paper, we propose a novel tactile flow imaging
technique, where we model “whisking” as a tomographic
imaging process to extract the 2-D characteristics of the
mean fluid-flow. In our recent work, we have introduced
the tomography idea with artificial whiskers for object shape
recognition using only the angular position at the whisker
base during the initial contact with the object, without any
need for moment measurements [13]. We now further gen-
eralize this approach by developing a more advanced phys-
ical model for the imaging of surroundings with artificial
whiskers, where we treat the moment measurements at the
whisker base on a whisker array as the projections collected
at a particular angular view for tomographic reconstruction.
The experimental results indicate that our tomographic tac-
tile fluid-flow sensing approach may find a potential use in
various robotic applications including underwater tracking,
navigation, source localization and obstacle avoidance.

2. TACTILE FLUID-FLOW TOMOGRAPHY WITH A
ROBOTIC WHISKER ARRAY

Assuming that the robotic whisker is a straight cylindrical
beam with substantial stiffness, the equation for the drag force
per unit length, fD, on a circular cylinder is given by

fD =
1

2
ρCDV

2d, (1)
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where ρ is the fluid density, and V is the relative flow ve-
locity, d is the diameter of the circular cylinder, and the drag
coefficient CD is a dimensionless number that depends on the
Reynolds number. It has been experimentally shown that the
drag coefficient is nearly fixed (CD ≈ 1.2) in the range of
100 < Re < 3× 105 for the circular cylinder. Therefore, the
drag force on a whisker segment becomes proportional to the
square of the relative fluid-flow velocity normal to the whisker
segment [14, 15], which acts as a distributed load along the
whisker length as illustrated in Figure 1. The distributed load
p(s) on a straight beam can be characterized in terms of the
force per unit length such that the load applied by the dis-
tributed load p(s) to a small segment of the beam length ds
is p(s)ds [16]. Assuming the whisker base at the location
s0 = 0, the incremental moment of p(s) around the whisker
base becomes sp(s)ds, yielding the moment at the whisker
base as

Mbase =

∫ L

0

sp(s)ds, (2)

which can be described as the weighted integral of the dis-
tributed load along the whisker of length L. In tomography,
the general goal is to reconstruct a multi-dimensional phys-
ical parameter from lower-dimensional measurements [17].
Therefore, if we collect these moment measurements with an
array of robotic whiskers from different directions, then we
can map out the 2-D cross-sectional fluid-flow velocity field
via the tomographic reconstruction.

p(s) 

s 
L 

Fig. 1. The distributed load along the whisker length: The
moment sensed at the whisker base is the weighted integral
of the drag force which acts as a distributed load along the
whisker length.

In practice, we have to cope with noisy and inaccurate
measurements. Self-noise from resistive sensors is known
to be approximately Gaussian, since the tomographic mea-
surement is an integral of flow-noise distribution along each
whisker. The central limit theorem suggests that the cumu-
lative measurement noise should be approximately Gaussian.
Therefore, considering a linear additive Gaussian noise sig-
nal model, we can write the linear observation model in the
matrix form at the ith angular view as

yi = Hixi +wi, (3)

where xi is the vector representation of the discretized un-
known image field of length N , and yi is the moment mea-
surement vector of length M . The linear matrix operator

Hi ∈ RM×N relates the measurements yi to the unknown
image coefficients xi with the additive noise vector wi of
length M .

The resulting inverse problem is the reconstruction of the
2-D cross-sectional fluid-flow characteristics from the 1-D
moment measurements. If the unknown flow field is suffi-
ciently static during the measurement interval or it is desired
to map out the cross-sectional mean fluid-flow characteris-
tics over a short period of time, the 2-D image can be recon-
structed using the measurement set

y1

y2
...
yL

 =


H1

H2

...
HL

x+


w1

w2

...
wL

 , (4)

where the stationary unknown field x has no temporal vari-
ation, and L is the number of angular views used for static
reconstruction. Then, the estimate for x is found by the mea-
surement vector y = [yT

1 ,y
T
2 , · · · ,yT

L]T of length M ·L and
the forward model matrix H = [HT

1 ,H
T
2 , · · · ,H

T
L]T ∈

RM ·L×N along with the known measurement noise vector
w = [wT

1 ,w
T
2 , · · · ,wT

L]T of length M · L.
The direct inversion of the linear model in Eq. (4) is gen-

erally not feasible, since the resulting inverse problem is ill-
conditioned and ill-posed, due to the whisker array consisting
of only several whiskers and the moment being measured at
only a limited number of views [18]. In the Bayesian stochas-
tic framework, if both the unknown image x ∼ N (µ,Π) and
the measurement noise w ∼ N (0,R) are Gaussian, where
N (m,Σ) denotes the Gaussian distribution with mean m
and covariance Σ, then the MAP estimate x̂MAP is

x̂MAP = arg max
x

log p(y|x) + log p(x)

= arg min
x
||y −Hx||2R−1 + ||x− µ||2Π−1 ,(5)

where ||z||2W = zTWz is the weighted residual norm with
W positive definite. If the unknown image and the measure-
ment noise have non-Gaussian distributions, then the estimate
in Eq. (5) becomes the linear minimum mean square error
(LMMSE) estimate, which minimizes E[||x − x̂||22] , where
E[.] is the statistical expectation operator [19]. Taking µ = 0,
the all-zero vector,R = λI , the λ-scaled identity matrix, and
Π = (DTD)−1 with D full column rank, the Eq. (5) yields
the Tikhonov-regularized estimate

x̂ = arg min
x
||y −Hx||22 + λ||Dx||22, (6)

where the quadratic penalty term refers to the prior knowl-
edge about the unknown fluid-flow field x [20,21]. Using the
fact that the fluid-flow velocity field should be fairly smooth
except for the cases such as vortex boundaries, the regulariza-
tion matrix is selected asD = (DT

x ,D
T
y )T withDx andDy

being the first-order difference approximations to the spatial
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derivative operators in the horizontal and vertical directions
to impose a specified degree of spatial smoothness, and the
regularization parameter λ is used to control the tradeoff be-
tween the data fidelity and the amount of smoothness. On the
other hand, the Tikhonov-regularized solutions are globally
smooth, meaning that the detailed information such as sharp
edges are also penalized while suppressing the background
noise. Alternatively, other techniques such as the total vari-
ation [23] or the maximum entropy regularization [24] may
be used to preserve the large gradients in the reconstructed
images.

Fig. 2. The array of five whiskers used for the 2-D cross-
sectional tomographic imaging of the air flow: Each robotic
whisker is made up of a superelastic Nitinol wire and covered
with a plastic straw to increase the exposure to the flow.

3. THE WHISKER ARRAY AND THE CALIBRATION
PROCESS

The whisker array built for the 2-D cross-sectional tactile
imaging of the different air-flow patterns is shown in Fig-
ure 2. Each whisker is made up of a superelastic Nitinol
(E ≈ 8 × 104 MPa) wire with a diameter of 0.5 mm and
length of 15.2 cm covered with a plastic straw to increase the
exposure to the flow. The two strain gauges (7×4 mm) facing
each other are superglued to the whisker at the whisker base
installed 1.5 cm away from the center of rotation. The plastic
straw with a diameter of 3 mm and length of 11 cm is super-
glued onto the Nitinol wire from the tip to the strain gauges,
making the whisker more sensitive to small deflections in-
cluding very small vibrations. The whiskers are attached onto
the setup made up of LEGO parts superglued to the carpen-
ter’s level of length 24 inches (≈ 61 cm). The whiskers were
separated by 2.42 cm apart from each other with three of
them (the middle and the two outer whiskers) rotating in one
direction while the other two in the opposite direction.

Figure 3 shows the experimental setup for air-flow exper-

Fig. 3. The setup for air flow imaging experiments (top)
and the positioning of the the hair dryer to generate different
steady air-flow patterns (bottom).

15 10 5 0 5 10 15

15

10

5

0

Width [cm]

D
ep

th
 [c

m
]

Fig. 4. The imaging geometry for the in-air flow imaging
experiments: The 13×21 grid in the background corresponds
to the discretized unknown image field to be reconstructed.

iments, where different steady air-flow patterns were gener-
ated by using a hair dryer and a concentrator. As illustrated
in Figure 4, a 13 × 21 pixel array is used to discretize the
unknown image field, and the whisker array was rotated by
5◦ normal to the direction of flow between the two successive
views using a servomotor. The moment measurements were
collected at 13 different angular views, which results in a to-
tal number of measurements, M = 13× 5 = 65, at each trial
All of the measured data were low-pass filtered at 160 Hz,
sampled at 500 Hz and averaged over 10 seconds.

The ground truth for the air velocity field was determined
by moving a hot-wire anemometer along the same 13 × 21
grid used for discretization of the field for each air-flow pat-
tern averaged over three trials. In order to calibrate the phys-
ical measurements to the moment sensed at the whisker base,
the simulated moment values were obtained over six different
ground truth images using the measurement matrix H65×273

generated with the same angular views from the experiments,
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Fig. 5. The 13 × 21 velocity-squared static images for the three different steady air-flow patterns generated by the hair dryer:
Top row: the ground truth images measured via a hot-wire anemometer. Bottom row: the Tikhonov-regularized images using
the calibrated physical measurements.

and the moment measurements were repeated five times for
the same flow pattern, totaling 6 × 65 = 390 measurements
for each whisker. Then, a second-order polynomial fit to ac-
count for any nonlinearity in the measurements was applied
for each individual whisker to map the measured voltage to
the moment value.

4. EXPERIMENTAL RESULTS

Figure 5 demonstrates the static tactile fluid-flow tomo-
graphic imaging results corresponding to the 2-D cross-
sectional velocity-squared distribution for the round-shaped,
vertical and right-tilted flow shapes generated by positioning
the hair dryer as shown in the bottom row of Figure 3. The
first row presents the ground truth images for each air-flow
shape, whereas the nonnegatively constrained Tikhonov-
regularized solutions using the calibrated physical measure-
ments are displayed in the bottom row. The resulting relative
error defined as ||xGT − x̂||2/||xGT ||2 is also given in Table
1 for each flow pattern. The regularization parameter was
manually set to be λ = 2.5× 10−10 for all of the three cases.
There exist, however, techniques such as cross-validation to
specify λ based on the available measurements [22]. The
resulting images show that the Tikhonov regularization pro-
duces stable minimum-norm least squares solutions for the
undetermined system as there are fewer measurements than
the number of pixels (M < N). The effect of global smooth-
ness can be clearly seen in the resulting images as a relatively
large regularization parameter was chosen to alleviate the
effects of the background noise, resulting in a larger relative
error particularly for the round-shaped and the right-tilted

flow patterns.

Description Round Vertical Right-tilted

Experiment vs. Truth 0.4449 0.1993 0.3556

Table 1. The relative error results for the three different
steady air-flow patterns generated by the hair dryer.

5. CONCLUSION

The tactile fluid-flow tomographic imaging results strongly
demonstrate that integrating tomography into tactile flow
sensing with an array of whiskers can recover the mean
cross-sectional fluid-flow velocity field with fairly high res-
olution. To our knowledge, there is no significant work in
the signal-processing area on reconstruction of surroundings.
Therefore, this new sensing technology may make it possi-
ble to perform sophisticated tasks such as the detection of a
nearby surface as it alters the flow before the actual whisker
contact or tracking a moving a object by its wake. Future
work includes the extension of our model to a more realistic
dynamic tomography scenario, which requires developing a
more sophisticated nonstationary image formation model for
the tactile fluid-flow tomography with artificial whiskers.
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