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ABSTRACT

This paper presents a method for designing a robust open
spherical microphone array that overcomes the typical prob-
lems of open sphere geometries at frequencies related to the
zeros of the spherical Bessel functions. The proposed array
structure uses only a few additional sampling points inside
the spherical volume whose optimal positions are determined
by the eigenmodes of the sphere for a given wave number in-
terval. This novel approach minimizes the interpolation error
inside the sphere. With illustrate this approach with the design
of a 10-th order array using 130 microphones and discuss the
simulation results with regard to commonly used error mea-
sures (white noise gain, condition number, and interpolation
error), and show that the proposed array design compares fa-
vorably to previously suggested array designs.

Index Terms— Robust spherical microphone array,
spherical harmonics, optimization, sound field interpolation.

1. INTRODUCTION

In 3-D audio applications the auditory scene is fully described
by the sound field p(x, ω), where x ∈ R3 is the position vec-
tor and ω denotes the angular frequency of the sound wave.
A number of formats are available to represent the 3-D sound
field (e.g., generalized Fourier series, single layer potential,
Herglotz wave function etc.) and different microphone array
geometries have been proposed to measure it. In this paper
we will focus on spherical microphone arrays (SMA), which
allow for expanding the sound field into series of spherical
harmonics (see e.g. [1, 2, 3]).

It is known from earlier studies on (open) SMA [4, 5] that
numerical instabilities appear at wave numbers which are re-
lated to the roots of the spherical Bessel functions. Meyer and
Elko [6] proposed to overcome this problem by placing the
microphones on a rigid (i.e. a sound hard) sphere. Since this
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approach is not very well suited for arrays with large radii sev-
eral authors have proposed alternative array geometries. One
way to overcome the numerical ill-conditioning of an open
array configuration is to use an array consisting of two con-
centric spheres with different radii (cf. [7, 8, 9]). However,
such arrays require two times the number of microphones of
single-sphere arrays. To reduce the number of microphones
non-spherical array geometries have been proposed, such as
the spherical shell array [10], hybrid array geometries [11],
the double-sided cone array [12], and the spindle torus array
[13].

In this paper, we present a SMA geometry that uses only a
few additional microphones inside the sphere and which pro-
vides very small interpolation errors for acoustic fields inside
the sphere. We show a method to determine the optimal num-
ber and the positions of the additional microphones using the
eigenmodes for a sphere with Dirichlet boundary conditions
in a given wave number interval.

2. THEORETICAL BACKGROUND

At a given wave number k, the sound field at position (r, θ, φ)
within a source free sphere can be described as (cf. [3])

p(r, θ, φ) =

∞∑
n=0

n∑
m=−n

pnmjn(kr)Ynm(φ, θ), (1)

where jn denotes the spherical Bessel functions, k is the wave
number, and Ynm are the spherical harmonics. The expansion
coefficients pnm can be estimated using the orthogonality of
the spherical harmonics

pnm =
1

jn(kr)

∫
S2
Y ∗nm(θ, φ)p(r, θ, φ, k)dS(θ, φ). (2)

The integral is typically evaluated on a finite set of quadra-
ture points on the sphere S2. The numerical calculation of
pnm fails for the eigenfrequencies of the ball with Dirichlet
boundary conditions, i.e. for jn(kr) = 0.

An alternative method estimates the expansion coeffi-
cients by a least-squares approach. While for a ‘purely’
spherical array the condition number becomes infinite near
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the eigenfrequencies, this method allows for the use of more
general array geometries that can be used to stabilize the
estimation at all frequencies.

Rafaely [10] proposes a spherical-shell array where some
microphones are moved from the boundary of the sphere to
the inside of the sphere. The positions of these microphones
are determined by a constraint nonlinear optimization proce-
dure minimizing the maximum of the condition number of
the (N +1)2 ×L matrix B(k) containing the products of the
spherical Bessel functions and the spherical harmonics

[B(k)]n(n+1)+m+1,i = 4πinjn(kri)Ynm(θi, φi), (3)

where N is the order of the microphone and L is the num-
ber of different microphone positions (ri, θi, φi). However, it
is not straightforward to determine the number of inside-the-
sphere microphones for a given order that ensures stability
and convergence of the optimization routine and results in a
robust microphone array.

In [14], Chardon et al. theoretically analyzed the sam-
pling of acoustic fields based on least-squares estimation in
disks and balls. They show that ensuring stability with the
minimal number of measurements requires to place most of
the microphones on the sphere and only a few of them inside
the sphere. The number of microphones for a stable estima-
tion of N spherical harmonic coefficients is proportional to
(at least) N3/2 for a uniform distribution of samples in the
sphere, whereas it is proportional to N/α for a distribution
with α samples on the sphere.

These results clearly show the importance of samples in-
side the sphere (which also has been recognized in practice),
but they do neither indicate the number nor the locations of
these inside-the-sphere measurement points. In the following
sections we develop an algorithm to determine these points
and compare the simulation results with previously suggested
array geometries.

3. ARRAY DESIGN

As has been pointed out in the previous section, spherical ar-
rays become unstable at the eigenfrequencies of the ball and
can be stabilized by using few microphones inside the sphere.
We propose here a method to determine the set of sampling
points that stabilizes the estimation of the acoustical field for
a given frequency range.

The proposed sampling scheme is composed of two sets
of sampling points. The first set of microphones is placed on
the sphere in order to estimate the spherical harmonic coeffi-
cients of the field when possible. For these points we choose
a grid that minimizes the interpolation norm, as has been pro-
posed by Sloan and Womersley [15, 16]. Note that any other
set of points may be used, as long as it provides stable in-
terpolation on the sphere. The second set of points is used
to stabilize the estimation at the eigenfrequencies of the ball

with Dirichlet boundary conditions. Some non-zero fields ex-
ist at these frequencies, which are zero on the sphere. It thus
is impossible to estimate the spherical harmonic coefficients
on the sphere and interpolate the field. Interior points are used
for a stable estimation of these coefficients.

Let us first assume that the eigenfrequencies are simple.
We now estimate the coefficients for the eigenmodes pn at a
finite number of frequencies ωn, which requires at least one
sample point inside the spherical domain. If carefully cho-
sen, a single point can be used for estimating the coefficients
for multiple modes at different frequencies. The eigenmodes
pn are measured at points with maximum amplitude and we
thus have to solve the following optimization problem to de-
termine the optimal microphone position:

x = argmax
x∈B

min
n
|pn(x)| (4)

where B is the domain inside the array.
In the case of the sphere, the eigenspaces En are degener-

ated. We therefore need m measurements, where m is the
maximum multiplicity of the eigenspaces in the frequency
band of interest. These points are obtained iteratively by solv-
ing the optimization problems

xi = argmax
x∈B

min
n

max
p∈En

‖p‖=1
(p(xj)=0)0<j<i

|p(x)|. (5)

These non-convex problems are simply solved by computing
the value of the criterion on a sampling grid of the ball.

Secondly, in the case of the sphere, the number of mi-
crophones needed is at most equivalent to the product kMR,
where kM is the upper bound of the considered frequency
band. This is small compared to the necessary number of mi-
crophones on the sphere, which is proportional to (kMR)

2.
As a result, the number of microphones needed for the pro-
posed array geometry is, for high frequencies, almost half the
number than the number of sensors needed for e.g. a double
sphere structure. It is also lower than the number of micro-
phones for Rafaely’s shell array structure, i.e. the sum of the
multiplicities of the eigenfrequencies in the considered band.
By using Weyl’s law [17], this quantity can be shown to be
proportional to k3M .

4. RESULTS AND DISCUSSION

The proposed array, as well as other arrays obtained by ex-
isting methods, are compared in terms of interpolation error
for a plane wave, condition number of the least-squares ap-
proximation, and the white noise gain. The white noise gain
is a commonly applied measure for the robustness of a mi-
crophone array or beamformer against sensor noise under the
assumption that the noise is spatially uncorrelated (cf. [18]).
It is defined using the signal-to-noise ratios of the input sig-
nal and the array output signal. With the assumptions given
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in [10] the white noise gain calculates to

wg(k) =
1

||B(k)†Y||2
, (6)

where B(k)† is the pseudoinverse of the matrix B(k) defined
in Eq. (3) and the vector Y=(Y00(θ0, φ0), · · ·, YNN (θ0, φ0))

T

contains the spherical harmonics evaluated at the direction of
the incoming plane wave.

In the following the error measures are estimated for a
spherical array of order 10 in a range of k ∈ [2, 9]. With-
out loss of generality we assume the radius of the sphere to
be r = 1. The sample points on the sphere are distributed
using the sampling grid suggested by Sloan and Womersley
[15, 16], which minimizes the interpolation error. The num-
ber of sample points inside the sphere is 9, the maximal mul-
tiplicity of the eigenmodes of the sphere in the chosen fre-
quency range. To allow for a fair comparison of the different
arrays, random points are added to the arrays with no inter-
nal points (i.e. the single sphere, double sphere, and spherical
shell arrays). Therefore, all arrays have the same number of
sampling points.

In summary, we are comparing the following array ge-
ometries and, if not explicitly stated otherwise, use the Sloan-
Womersley grids for the angular distribution of sampling
points:
Simple sphere: Open sphere array with 121 regularly dis-

tributed plus 9 randomly distributed sensors on the
sphere.

Double sphere: Double sphere array with 130 sensors dis-
tributed over two open spheres. The sphere radii are
chosen according to [7]: r1 = 18/(18+π) and r2 = 1.
The angular distribution of sample points uses a regu-
lar grid of order 7 plus 1 additional sensor at a random
position at each sphere.

Proposed array: Open sphere array with 121 regularly dis-
tributed sensors on the sphere and 9 additional sensors,
which are positioned inside the sphere using the algo-
rithm proposed Eq. (5); typical computation time: 10 s.

Shell (Rafaely): Spherical shell array with 130 sensors using
the same angular distribution as for the simple sphere
configuration and random radii between r1 = 18/(18+
π) and r2 = 1 according to [10].

Sphere + random: Open sphere array with 121 sensors on
the sphere and 9 additional sensors that are randomly
distributed inside the sphere.

Sphere + interior (Rafaely): Open sphere array with 121
sensors on the sphere plus 9 additional sensors (i.e.
a grid of order 2) at radii obtained from the nonlin-
ear optimization method in [10]. We used Octave’s
sequential quadratic programming (SQP) solver [19]
with default parameters and initial radii that were ran-
domly distributed in the interval [0, 1]. For an open
sphere, the prominent singularities of the condition
number of matrix B in Eq. (3) are in the wave number

range of k ∈ [5, 9] (cf. Fig. 2). Therefore, the addi-
tional 9 sampling points inside the sphere were placed
with respect to the minimum of the condition number
inside this wave number interval and were restricted
to be in the interval [0, 1]; typical computation time:
3 min.

4.1. Interpolation error

The interpolation error for the reconstruction of a plane wave
for different array types is depicted in Fig. 1. The error is
averaged on 50 realizations of noise (white Gaussian noise,
SNR = 40 dB) and plane wave directions.

We first compare the proposed robust array to conven-
tional array geometries (see Fig. 1, left subplot), such as the
simple sphere and the double sphere. For the proposed array
two operation modes are clearly visible: for approximately
k < 6 the interpolation error is dominated by the noise level,
while for k > 6 the approximation error for a plane wave and
spherical harmonics decomposition with order N = 10 dom-
inates. It can be seen that the proposed array is stable for all
frequencies within the chosen frequency band, whereas the
simple sphere becomes unstable at the eigenfrequencies of
the ball. The double sphere (with an internal radius as sug-
gested in [7]) is stable at all frequencies; however, only an
order N = 7 can be used for the decomposition and thus the
interpolation error is higher for k > 4.

Next, we compare the performance of different array ge-
ometries with interior points using the optimization method
proposed by Rafaely in [10] (see Fig. 1, right subplot). Here
again the proposed array provides the lowest interpolation
error. For the shell array the angular sampling grid is ran-
domly distributed on different radii bounded by inner and
outer spheres (see [10] for more details). The mediocre per-
formance of the shell array (even in comparison to the simple
sphere) can be explained as follows. The convex hull of the
points of the shell array is smaller than that of the spheri-
cal array and the interpolation is only relevant in this convex
hull; the larger resonance peaks are due to the splitting of
the eigenvalues of the sphere. Rafaely’s spherical array with
9 additional sampling points in the ball at optimized radial
distances clearly reduces the instabilities of some, but not of
all eigenvalues. It only performs slightly better than an ar-
ray with randomly chosen interior points. This is very likely
linked to the non-convex shape of the function to be optimized
(i.e. the maximal condition number on a given interval of fre-
quencies), which is hard to minimize (unknown gradient and
9 variables).

4.2. Condition number and white noise gain

As already mentioned, the condition number of the matrix B
in Eq. (3), is used as a measure for the robustness in [10].
In Fig. 2, the peaks of the condition number for the open
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Fig. 1. Interpolation error for a plane wave inside the spherical arrays, for 50 trials at each wave number k ∈ [2, 9]. All the
arrays have 130 microphones; the SNR = 40 dB.
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Fig. 2. Condition number of the least-square estimation for 4
different arrays with 130 microphones.

sphere at the zeros of the spherical Bessel function can be
clearly observed for wave numbers k ∈ [5, 9]. Most of the
peaks can be suppressed by adding additional microphones
inside the sphere, however, for the peak around k = 8.18 our
method yields the biggest suppression compared to all other
approaches. Because the microphones are inside the ball and
not on the sphere, the condition number for the shell array is
larger over the whole wave number interval.

The white noise gain depicted in Fig. 3 shows a similar
behavior as the condition number. The effect of the roots of
the spherical Bessel function again can be clearly seen for the
simple open sphere and the improvement by the additional
microphones inside the sphere is similar to the improvement
in the condition number. Again, the worse performance of the
regular shell array is observed.
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Fig. 3. White noise gain for 4 different arrays with 130 mi-
crophones.

5. CONCLUSION

In this work we have presented a simple method for generat-
ing robust spherical microphone arrays by adding additional
sampling points inside the sphere. Our approach is motivated
by the results from [14]. The additional microphones are
positioned using the eigenmodes for a sphere with Dirichlet
boundary conditions in a given wave number interval. Com-
pared with the approach by [10] this approach has the ad-
vantages that the number of additional microphones is known
once the wavenumber range is set, the computation time is
of the order of 10 second on a standard computer, and a bet-
ter stability is achieved. In our numerical experiments it was
shown that this novel approach results in a robust microphone
array that, compared with other approaches in literature, has
a smaller interpolation error for acoustic fields in the sphere.
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