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ABSTRACT

In underwater acoustics, shallow water environments (d <
200 m) act as dispersive waveguide when considering low-

frequency sources (f < 250 Hz), and propagation is de-

scribed by modal theory. Propagated signals are usually

multicomponent, and the group delay of each mode (each

component) is dispersive and varies with mode number. The

waveguide dispersion is characterized by modal wavenum-

bers, which are widely used as inputs of inversion algorithms

to estimate environmental properties. Considering a horizon-

tal array and a source along the axis of the array, wavenumber

estimation is equivalent to spectral analysis in the range

dimension. A large number of hydrophones (i.e. range sam-

ples) is thus required to perform an accurate wavenumber

(i.e. spectral) estimation. This paper proposes an original

approach for estimating the wavenumbers using a short array

and a broadband low-frequency source. The wavenumbers

are tracked in the frequency-wavenumber (f − k) domain us-

ing particle filtering. The waveguide physics provides generic

system and state equations to model the f − k diagram. In

particular, it is possible to define an iterative relationship for

wavenumber at two consecutive frequencies using the dis-

persion relation, which holds true in every waveguide. The

proposed method provides interesting results on simulated

data using 10 hydrophones. It is validated on experimental

data recorded in the North Sea.

Index Terms— Particle filtering, dispersive waveguide,

wavenumber estimation, underwater acoustics

1. INTRODUCTION

Low frequency (f < 250 Hz) acoustic propagation in shallow

water (depth d < 200 m) is dispersive: each frequency propa-

gating with its own speed. Considering a source S(f) located

at rs = 0 and at the depth z = zs, the acoustic pressure at

[r, z] for the frequency f consists of M dispersive compo-

nents called modes:

P (r, z, f) = S(f)

M
∑

m=1

Am(f)e−jφm(f). (1)

The phase function of each mode φm(f) = rkrm(f) depends

on the source/receiver range r and on the waveguide proper-

ties through the horizontal wavenumber krm(f). The modal

amplitude Am(f) depends both on the waveguide prop-

erties and on the source/receiver configuration (range and

depth). As the waveguide is dispersive the modal wavenum-

bers krm(f) depend non-linearly on frequency. They are

widely used as input for inversion algorithms to estimate en-

vironmental parameters.

Using a Horizontal Line Array (HLA) and a broadband

source in the HLA axis (end-fire position), krm identifica-

tion becomes a well known spectral estimation problem (in

the range dimension). For wideband sources, one can obtain

a frequency-wavenumber (f − k) diagram by computing the

modulus of the spatial and temporal Fourier Transform (FT)

of the array signal, which can be reduced to the spatial FT

of equation (1) along the r axis [1]. This representation is

suitable to recover the multimodal and dispersive nature of

the shallow water waveguide, and thus estimate the environ-

mental properties [2] or localize source depth [3]. However,

the spatial FT presents limitations; in particular, an accurate

separation of the wavenumbers requires a large amount of

sensors. As an example, simulated f − k diagrams computed

using 10 and 240 sensors are presented in figures 1(a) and

1(b).

Because deploying long HLA underwater is both tedious and

expensive, it is interesting to propose methods that allow

wavenumber estimation using a relatively small number of

hydrophones. This can be done using high-resolution meth-

ods, which classically allows for better spectral analysis [4].

However, these methods are limited to narrowband sources

(wavenumbers are excited at a single frequency) [5, 6]. At

best, they can be applied in a broadband context for each

frequency independently. As an example, f − k diagram can

be obtained by replacing the spatial FT with an autoregressive

spectrum [7, 8].

In this paper, we show that it is possible to track wavenum-

bers in a badly resolved f − k diagramm obtained by spatial

FT, thanks to physical knowledge of the waveguide propaga-

tion. In particular, wavenumbers are tracked using particle
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(a) 10 sensors f − k diagram
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(b) Tracking result
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(c) Particle probability density

Fig. 1. Simulated data: (a) f−k diagram obtained with spatial FT on 10 sensors; (b) mean trajectories of 500 particles per mode

obtained with 10 sensors (red dots) over a f−k diagram obtained with 240 sensors; (c) particle distributions for the first, second

and third modes at 54 Hz (respectively purple, blue and brown curves), along with the wavenumber spectra at 54 Hz computed

with 10 sensors (dashed red curve) and 240 sensors (dashed green curve). Red arrows show the theoretical wavenumber of

modes 1, 2, and 3 estimated on the 240 sensor f − k diagram. The spectrum amplitudes are arbitrarily normalized.

filtering (PF) method [9] and a state-space relation based on

the generic dispersion relationship. Note that PF algorithms

have been applied in several domains of acoustics [10] and

underwater acoustics [11]: time of arrival estimation, detec-

tion of variations in the waveguide, mammal tracking, etc.

However, none of these methods take advantage of propaga-

tion knowledge to define physics-based state-space relation.

The remainder of the paper is organized as follows. In sec-

tion 2, the waveguide physics will be introduced to obtain a

state equation, which links krm values from one frequency to

the other; an observation equation will also be introduced to

generate the spectrum associated to a particular wavenumber

set. Then, in section 3, the bayesian formulation of the prob-

lem will be presented to apply a tracking algorithm for the

wavenumber estimation. Finally, section 4 presents simulated

and experimental results. The proposed method allows to

properly estimate wavenumbers using 10 sensors, both on

simulated data and experimental marine data recorded in the

North Sea.

2. DISCRETE AND DYNAMIC MODEL OF THE

f − k DIAGRAM

Let us consider a discrete f − k diagram D[ν, κ] with ν ∈
[1, Nf ] the discrete frequency and κ ∈ [1, Nk] the discrete

wavenumber. At discrete frequency ν, the wavenumber spec-

trum D[ν, 1 : Nk] can be modeled as a discrete dynamical

system, parametrized by two equations: a system equation

and an observation equation. The observation equation is

the relation generating the wavenumber spectrum from the

wavenumber vector [kr1[ν], ..., krM [ν]]T (as a reminder, M
is the number of modes). The system equation is the iterative

relation that links krm[ν + 1] to krm[ν].

2.1. System equation

Because of modal propagation properties [12], the horizontal

wavenumbers krm follows
(

2πf

c

)2

= krm(f)2 + kzm(f)2, (2)

where c is the water sound speed and kzm the vertical

wavenumber. Equation (2) is called the dispersion relation-

ship, and is valid in every waveguides. Note that in shallow

water waveguides, the vertical wavenumber kzm(f) weakly

depends on frequency f .

The wavenumber krm(f) has two distinct behaviors depend-

ing on a particular frequency fm called the cutoff frequency

of mode m. If f > fm, the wavenumber krm(f) is a real

number. In this case, using Eq. (2), it is possible to derive the

iterative relation

(3)krm[ν + 1]2 = krm[ν]2 + (2ν + 1)

(

2π∆f

c

)2

+ kzm[ν]2 − kzm[ν + 1]2,

where ∆f is the resolution of the frequency axis. As kzm
barely depends on frequency, kzm[ν]2 − kzm[ν + 1]2 can be

neglected; in the following, this difference is assimilated to a

random gaussian uncertainty.

When f < fm, the wavenumber krm is an imaginary num-

ber and does not propagate; it is evanescent and does not im-

pact the f − k diagram. The cutoff frequencies can be rela-

tively well known using minimal a priori information about

the waveguide, or directly estimated on the f − k diagram.
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2.2. Observation equation

The waveguide has a modal behavior, its response presents

resonances at the krm values. A simple observation equation

inspired from the receptance response in modal analysis can

be used to describe the normalized acoustic pressure y(f, k)
[13]:

y(f, k) =
M
∑

m=1

1

|k2 − krm(f)2 + jξ|
, (4)

which naturally leads to discrete wavenumber spectra yν

of size [1 × Nk]. In (4), ξ is a resolution parameter and

is estimated on the measured wavenumber spectrum using

peak picking method [13] at the first value after the first

cutoff frequency. It can be seen as a damping coefficient

multiplied by a wavenumber but it does not depend on the

frequency. Thanks to ξ, the estimated yν is as badly resolved

as D[ν, 1 : Nk].

The dynamical model of the f − k diagram consists of

equations (3) and (4). Bayesian framework offers great op-

portunity for estimating the krm and tracking their evolution

using classical PF algorithm. Since the system equation is

nonlinear and the observation is not gaussian (krm can not

take negative values), PF is an adapted tracking algorithm.

3. PARTICLE FILTERING

The wavenumbers krm are tracked using a classical bootstrap

algorithm [9, 14]. Note that as a preliminary step, each line of

the f − k diagram is normalized, which leads to normalized

wavenumber spectra yν .

An initial discrete frequency ν = ν0 is chosen as first fre-

quency where one mode is present. In the following, mode

number is thus M(ν) = 1, and xν = kr1[ν] is the tracked

wavenumber. The measured wavenumber spectrum can be

seen as distribution of xν . Thanks to Monte-Carlo integra-

tion, it can be discretized as a vector xν of Ns particles xn
ν

(the exponent n denoting the particle number). Using Eq. (3),

the evolution of the particles is defined as a Markov Mod-

els [9], leading to xn
ν+1. Corresponding wavenumber spectra

yn
ν+1 can then be generated using the observation equation

(4).

Importance Sampling (IS) strategy is required to correctly

approximate the wavenumber spectrum distribution [9]. It

consists in associating weights wn
ν+1 to the particles xn

ν+1.

Thanks to the bayesian inference, wn
ν+1 = L(xn

ν+1|yν+1),
where L is the likelihood function for spectral estima-

tion [15]. The IS is finally applied by updating the particles

xn
ν+1 = w̃n

ν+1x
n
ν+1 where w̃n

ν+1 = wn
ν+1/

(

∑Ns

n=1 w
n
ν+1

)

.

It is known that PF is not suitable for a high number of

iterations as it could lead to degeneration of the particles:

the weight associated to a majority of particles tends toward

zero while ν increases [9]. To prevent this phenomenon, the

weight efficiency is evaluated by weff
ν+1 = 1/

∑Ns

n=1(w
n
ν+1)

2.

When weff
ν+1 becomes smaller than a threshold ws, a new

particule set xν+1 is drawn. This step is called multinomial

resampling [9]; wheter it is required or not, frequency ν is

then incremented and the whole process repeated.

Note that smoothing [9] could be applied at the end of the

bootstrap algorithm. It classicaly increases the PF perfor-

mances. However, it will not be applied in our modal track-

ing context because the paper focuses on the physics-based

model and system equations.

In our modal tracking context, it is important to slightly

modify this classical bootstrap algorithm. Indeed, the number

of tracked modes increases with frequency: mode m exists

when f > fm. As a consequence, mode number M(ν) can

be greater than one and depends on frequency ν. When ν be-

comes greater than a discrete cutoff frequency νm, the mode

number is incremented and a new particle set is drawn. As a

result, number of particles required to sample yν is actually

M(ν)Ns; and the particule vector xν can be decomposed into

M(ν) subsets, each subset corresponding to a given mode. It

is thus important to know (or estimate) the cutoff frequency

of each mode.

4. APPLICATION

The tracking of the wavenumbers is applied on a simulated

waveguide and on measurements realized in North Sea by

CGG.

4.1. Pekeris Waveguide

The methodology is first applied on a simulated Pekeris

waveguide, a classical shallow water model [12]. The en-

vironment consists of an isovelocity water column (depth

130 m, sound speed 1500 m.s−1, density 1 kg.m−3) over a

semi-infinite fluid seabed (sound speed 2000 m.s−1, density

2 kg.m−3). The receiving array lies on the bottom, the hy-

drophone spacing is 25 m which produces a 6 km long array.

The source signal is a perfect impulse with white spectrum

from 0 to 60 Hz. It is localized at depth zs = 130 m at the

same range than the first HLA hydrophone. A white Gaussian

noise is added on each hydrophone signal so that signal to

noise ratio is 5 dB per sensor.

The f − k diagram obtained using 10 hydrophones is repre-

sented in figure 1(a). The k dimension spectrum is obtained

by FT on 2048 points using zeropadding and a Hann win-

dow. Because of the small hydrophone number, wavenumber

resolution is really poor and wavenumber values can not be

estimated. Wavenumbers are tracked over this 10-sensor f−k
diagram using the methodology presented in section 3. The

tracking is performed using 500 particles per wavenumber

over 500 frequency bins.

The mean tracks of the wavenumbers are plotted over a 240-

sensors f−k diagram in figure 1(b). The wavenumber trajec-
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(a) 10 sensors normalized f − k diagram
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(b) Tracking result
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(c) Particle probability density

Fig. 2. Measured data: (a) f − k diagram obtained with spatial FT on 10 sensors; (b) mean trajectories of 500 particles per

mode obtained with 10 sensors (red dots) over a f − k diagram obtained with 240 sensors; (c) particle distributions for the first,

second and third modes at 50 Hz (respectively purple, blue and brown curves), along with the wavenumber spectra at 50 Hz

computed with 10 sensors (dashed red curve) and 240 sensors (dashed green curve). Red arrows show wavenumber values of

modes 1, 2, and 3 estimated on the 240 sensor f − k diagram. The spectrum amplitudes are arbitrarily normalized.

tory coincides really well with the 240-sensor f − k diagram,

demonstrating the method ability to track wavenumbers using

10 sensors. The first mode trajectory presents a deviation at

its start but it is corrected among the frequencies. The asso-

ciated particle distributions for f = 54 Hz are presented for

the first, second and third mode with purple, blue and brown

lines in figure 1(c). For comparison, the 10 and 240 sensor

spectra are plotted as dashed red and green lines. Vertical

red arrows show the theoretical position of the first three

modes. The particle distribution associated to the first mode

is sharper than the peak obtained with 240 sensors whereas

the particle distribution associated to the second mode present

the same spreading than the 240-sensor spectrum. The third

mode particles present high variation. This phenomenon can

be explained by the duration of the tracking: mode 1 and 2

are tracked over a greater frequency band, so that weighting

and resampling lead to sharper distributions.

4.2. North Sea measurements

The methodology is also applied on experimental data col-

lected in the North Sea by CGG [2]. The source signal is

an airgun, emitting a short impulsion with a relatively white

spectrum from 0 to 60 Hz. The array is composed of 240

omnidirectionnal hydrophones, equally spaced every 25 m.

The array is then 6 km long and lays on the seabed. Data are

recorded at sampling frequency 250 Hz. The environment can

be approximated by a Pekeris waveguide with the parameters

that have been used in section 4.1 [2].

As for the simulation wavenumber are tracked over a 10-

sensor f − k diagram (corresponding array is 225 m long)

using 500 particles per wavenumber, and experimental re-

sults are presented in figure 2. The 10-sensor f − k dia-

gram is shown in figure 2(a): it is particularly irregular and

noisy when compared with the simulated one. The estimated

wavenumber trajectories are superimposed on a 240-sensor

f − k diagram in figure 2(b). The estimation seems good, ex-

cept for a small deviation at the start of each modes. This de-

viation tends to be corrected as frequency increases thanks to

the weighting process. The particle distributions at 50 Hz are

presented in figure 2(c). These results have a similar behav-

ior than the simulated ones, although the distributions have a

more important variance, which is probably due to the initial

noisy and irregular f − k diagram.

5. CONCLUSIONS AND PERSPECTIVES

This paper presents an original approach for estimating

wavenumbers in shallow water waveguide using a small

HLA and a broadband source. Physical information from the

waveguide theory is used to construct a model of the f − k
diagram. The strength of the proposed method is to inject

physical a priori through the dispersion relationship. This

relationship is at the same time true for every waveguide and

robust enough to allow wavenumber tracking using PF. The

method is successfully applied on simulated and experimen-

tal marine data. The particle distributions give an accurate

estimation of the wavenumbers and provide estimation uncer-

tainty.

The estimated wavenumbers and uncertainties can be used

as the input of inverse algorithms. Considered applications

include geoacoustic inversion, and particularly estimation of

the attenuation in the sediment.
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