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ABSTRACT

Compressed Sensing (CS) provides a rich mathematical
framework to efficiently acquire a sparse signal from few
non-adaptive measurements. In radar imaging, most scenes
are sparse and CS can be successfully applied for efficiently
acquiring the target scene. Although the use of CS in radar
is advantageous in many aspects, a higher noise in the re-
ceived signal makes the output of CS unreliable. We propose
a framework based on CS and matched filtering to improve
the performance of CS particularly in high noise scenarios.
We realize this framework by CS on chirp signal and discuss
some limitations associated with it. Numerical experiments
confirm a substantial performance improvement using the
proposed framework compared to conventional CS recon-
struction.

Index Terms— compressed sensing, sparse reconstruc-
tion, matched filtering, data fusion.

1. INTRODUCTION

Range and velocity estimation is the first step in moving target
indication in Radar. The range-velocity plane is often viewed
as a linear time-varying system H. A probing signal f is used
to determine the target characteristics from the reflected ob-
servation y = Hf . For efficient and accurate estimation of
time delays and Doppler shifts from y, one needs to over-
come the fundamental time-frequency uncertainty, and miti-
gate noise & clutter.

We consider target detection in 1-dimensional, far-field,
narrowband monostatic radar. The target is modeled as a non
fluctuating point target in the range-velocity (delay-Doppler)
plane, moving with a constant radial velocity. In real-life sce-
narios, the number of targets in the imaging plane of the radar
is unknown. Matched filtering (MF) typically search for all
possible time delays and Doppler shift combinations in the re-
flected signal y, and its output (time-frequency plane) suffers
from the inherent time-frequency limitations of the probing
signal [1].

Consider the situation of only a few airplanes against the
wide sky; hence the final results delivered by the radar imag-
ing contains very few significant detections compared to the
data collected in the front end. The theory of compressed

sensing can be employed in different constructs [2, 3] to ad-
dress various problems arising in the radar community. Par-
ticularly, most of the works focus on applying CS towards
reducing data without compromising performance [4–6].

Although applications of CS in radar signal processing are
very promising, one needs to address its satisfactory operating
regime for the optimal usage. Compressed sensing, in specific
cases, can improve the resolution [1, 6] thereby increase the
accuracy of target detection. However, the reliability of CS
drops heavily when the noise in the reflected signal is high,
a situation that often occurs in the case of single-pulse radar
returns. Secondly, a slight violation in sparsity may lead to
failure in CS reconstruction algorithms.

In this paper, we introduce an abstract framework to im-
prove the reliability of the CS reconstruction by utilizing the
information from matched filtering, particularly in the low
SNR regime. We propose an improved CS reconstruction
algorithm based on compressive sampling matching pursuit
(CoSaMP), followed by fusing the output of CS and MF to
improve the detection accuracy. We emphasize that the pro-
posed approach utilizes all Nyquist samples. In this paper, we
explore ways to use best of both worlds, i.e., CS and MF, with
the aim of improving the accuracy of the conventional radar
systems [7].

In Section 2, we explain the proposed compressed sensing-
matched filtering framework and its components. Numerical
results were presented in Section 3. We offer concluding
remarks in Section 4.

2. COMPRESSED SENSING-MATCHED FILTERING
FRAMEWORK

A schematic of the proposed framework is shown in Fig. 1.
We refer to this system as compressed sensing-matched filter-
ing (CS-MF) framework, where we consider CS as an aug-
mentation to the conventional system rather considering it as
a replacement. In Fig. 1, the matched filtering line is shown
in the bottom, referred as standard line, with auxiliary CS
line on top of it. The CS reconstruction of the target scene is
achieved by a random subset of samples acquired via Nyquist
sampling; more importantly, we consider matched filtering
output to guide CS reconstruction. Optionally, the received
baseband signal can be subjected to coherent integration be-
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fore CS-MF framework to improve the SNR. The output of
CS reconstruction is then fused with MF to produce the final
output.
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Fig. 1. Compressed Sensing and matched Filtering (CS-MF)
framework. The highlighted blocks in this diagram are dis-
cussed in this paper.

We explain the implementation of CS using chirp sig-
nals in Section 2.1. A CS reconstruction algorithm based
on CoSaMP guided by matched filtering is explained in Sec-
tion 2.2. A note on fusing the output of MF and CS recon-
struction is given in Section 2.3

2.1. Compressed sensing based on Chirp signals

We consider the implementation of compressed sensing based
on linear frequency modulated (LFM) chirp signal as dis-
cussed in [8]. Consider a complex waveform f with carrier
frequency ω0. Let r and v denote the range and radial velocity
of the target; this can be computed from the delay τ = 2r/c0
and Doppler shift u = 2vω0/c0, where c0 refers to the veloc-
ity of light. With the reflectivity coefficient of the target be
x(τ, u), the reflected signal is given by the following equa-
tion:

y(t) =

∫ ∫
x(τ, u)f(t− τ)e−2πiutdudτ + w(t), (1)

where w(t) represents complex Gaussian baseband noise.
The transmitted linear frequency modulated waveform f is
given by:

fLC(t) = exp
[
2πi

(α1

2
t2 + ω0t

)]
IT (t), (2)

where IT (t) is the indicator function of duration [0, T ], which
gives the duration of transmission. The reflected signal y(t)
is given by:

y(t) =

∫ ∫
x(τ, u)fLC(t− τ)e−2πiutdudτ, (3)

and the sampled signal y(tj) is given by:

y(tj) = fLC(tj)
∑
k,l

xk,lfLC(−τk) exp[−2πi(α1τk + ul)tj ],

with τk = k∆τ and ul = (l − N/2)∆u where k, l =
1, . . . , N , represent the delay-Doppler grid. With the as-
sumption:

α1 = ∆u/N∆τ, (4)

we set up the following grid {γp},

γp = τk + ul/α1 = (p+N −N2/2)∆τ, (5)

where p = k +N(l − 1) ∈ {1, . . . , N2}. By choosing

T =
NQ

∆u
, Q ∈ N, (6)

we can write the sampled signal y(tj) in the matrix form y =
Fx + e. The individual elements of the matrix form is given
by the following equations.

yj =
y(tj)

fLC(tj)
eπi(2N−N

2)Qt̂j , (7)

xp = xk,lfLC(−τk), (8)

Fj,p = exp[−2πiQpt̂j ] ∈ CM×N
2

. (9)

By choosing tj uniformly random over [0, T ], j = 1, ...,M ,
the sensing matrix F becomes random partial Fourier matrix
of size M ×N2.

In most cases, the random partial Fourier matrix F sat-
isfies the restricted isometry condition, and hence can be
used to reconstruct the sparse vector x via sparse reconstruc-
tion algorithms (greedy algorithms or basis pursuit denois-
ing (BPDN)) [8–10].

2.2. CS reconstruction by Modified CoSaMP (M-CoSaMP)

Compressive Sampling Matching Pursuit (CoSaMP) [10] is a
greedy, iterative sparse signal recovery algorithm which pro-
vides an approximation of the sparse signal x (eq.(8)) from
the compressed measurements y (eq. (7)). First, a proxy for
the signal to be estimated is formed using the measurement
matrix F and the compressed measurements y. CoSaMP es-
timates the target signal iteratively from the signal proxy. At
each iteration, the current approximation ak induces a resid-
ual v containing the part of the target signal to be approx-
imated. The signal estimate and residual will get updated
in each iteration; the residual determines the tentative signal
support for the every subsequent iteration.

The matched filtering estimate of the signal x (referred as
xMF ) is not sparse and suffers from side-lobes of the ambi-
guity function. However, since it is reasonable to assume that
x is sparse, CoSaMP can be used to solve for x. Both the
MF and CoSaMP output provide helpful information about
the target location. Hence the MF output xMF can be used
to obtain a better signal proxy in CoSaMP. We consider nor-
malized MF output ΩMF to weigh the CoSaMP signal proxy
FHv, where FH refers to the Hermitian transpose of FH .
The weighting is expected to improve the overall performance
of CoSaMP, especially when the SNR is low. Pseudo-code for
this algorithm is provided in Alg. 1.
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Algorithm 1: Pseudo-code for modified Compressive
Sampling Matching Pursuit (M-CoSaMP) reconstruc-
tion algorithm.

Input: Measurement Matrix F, noisy measurement
vector y, sparsity level s, MF weighting ΩMF

Output: An s-sparse approximation a of the signal x
Intialize: a0 ← 0; v← y; k ← 0;

u = (FHv) · ΩMF // Enhancement

repeat
k ← k + 1
Ω← supp(u2s) // Identify 2s large comp.

T ← Ω ∪ supp(ak−1) // Merge Supports

b|T ← F†Ty
b|T c ← 0

ak ← bs // Prune to s large comp.

v← u− FHak

u = FHv

until stopping criteria is met

2.3. Fusing MF and Modified CoSaMP (M-CoSaMP+MF)

In matched filtering, the radar return (eq. (1)) is correlated
with the time-frequency shifted versions of the transmitted
signal fLC , and hence the delay-Doppler plane contains the
self-ambiguity function of fLC centered at the target locations
(τ, ω) scaled by the reflection coefficient x(τ, ω). In case of
multiple targets, the delay-Doppler plane is a superposition
of the self-ambiguity function at the location of the targets.
When two targets are sufficiently close, overlapping ambigu-
ity functions leads to loss of ability to distinguish individual
targets.

Even though the target plane reconstructions of MF and
CS can be analyzed separately, fusing them can help in im-
proving the resolution and removing the false alarms. This
fusion will help to emphasize the targets detected by both MF
and CS whereas suppressing false alarms. Especially at low
SNR scenarios, CS output degrades and a careful inspection
is needed to reduce the false alarms, which is accomplished
by fusing the output of matched filtering.

In fusion, we use MF output as a guide to select the sig-
nificant part of the CS output to obtain the overall output of
CS-MF framework. We retain the subset of the CS output cor-
responding to the locations with the largest amplitude in the
MF output. The output of CS is set to zero at locations where
the MF output is relatively small. Specifically, we retain the
N rows in the CS output corresponding to the largest ampli-
tudes in the MF output along the Doppler dimension. This is
explained in more detail in Section 3.
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Fig. 2. Original target scene, matched filtering, and CS recon-
struction for single-pulse SNR of 15 dB. (a) Original target
scene, (b) Matched filtering, (c) CoSaMP reconstruction, and
(d) BPDN reconstruction.

3. RESULTS AND DISCUSSION

The Compressed sensing-Matched filtering (CS-MF) frame-
work is illustrated using simulations on a time-frequency grid
of size 47 × 47. We consider eight targets with varying am-
plitudes, distributed as one isolated target and seven clustered
targets; the original target plane is shown in the Fig. 2(a). We
assume that all the targets exactly occupy the grid positions.
We consider the following experimental parameters for the
LFM Chirp based CS : N = 47, M = 47, ∆τ = 1, ∆u =
1/M ,Q = 47; sparsity level is set to s ≈M/(2 logN2) [10].
All simulations are averaged over 100 noise realizations to
maintain consistency.

In Fig. 2, we compare CS Radar reconstructions with
matched filtering. Matched filtering reconstruction of the
original target scene is shown in Fig. 2(b); in this case the
chirp rate is set to α1/2 = 25 [11, 12], and the target scene
is reconstructed by an up-chirp followed by a down-chirp.
Chirp based CS radar explained in the Sec. 2.1 is used to re-
construct the target plane by CoSaMP [10] and basis pursuit
denoising [9] algorithms; the corresponding reconstructions
are shown in Figs. 2(c) & (d), respectively. A comparison
clearly reveals that CS reconstruction is able to exactly re-
solve the targets located in the adjacent cells individually,
whereas MF approximately locates them. When noise in-
creases, CS degrades quickly and often produces unreliable
estimates whereas MF still locates the targets approximately.
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Fig. 3. Delay-Doppler reconstruction for the SNR of 0 dB for
(a) Matched filtering, (b) CoSaMP, (c) CoSaMP with modi-
fied signal proxy, (d) (c) along with MF weighting.

The CS-MF framework explained in the Sec. 2, imposes
limitations on the chirp signal parameters. This limitation re-
duces Bandwidth-Time (BT) product of the chirp signal to
less than unity, thus making it unsuitable for pulse compres-
sion [13]. We show the obtained MF reconstruction of the
target plane in Fig. 3(a); an inspection clearly highlights the
resolution loss along time (delay) in comparison with a typi-
cal MF output with a higher BT product (Fig. 2(b)). Never-
theless, we stick to a lower BT product in CS-MF framework
with the intent to realize MF and CS in single-pulse return.

The CS-MF framework helped in obtaining a satisfac-
tory operation at low SNR scenarios; this is demonstrated in
the Figs. 3(b), (c) & (d) for single-pulse SNR value of 0 dB.
CoSaMP reconstruction, given in Fig. 3(b), failed completely.
On the other hand, Fig. 3(c) shows that the M-CoSaMP recon-
struction detects every target at the same SNR, except a few
outliers. We extract K rows having largest amplitude along
the Doppler direction from the MF output represented by the
set {I}. We retain the rows indicated by the set {I} in CS
reconstruction and remove the rest of rows, whose output is
shown in Fig. 3(d). By this simple procedure, target detection
is enhanced and the false alarms in CS output can be substan-
tially reduced.

In Fig. 4, we summarize the normalized root-mean-square
distortion (NRMS) with the single-pulse SNR for the algo-
rithms discussed in this paper. We define NRMS, an error
measure comparing the original and the reconstructed target
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Fig. 4. Normalized root-mean-square distortion of the recon-
structed target plane with single-pulse SNR.

plane by the following equation:

NRMS(x, x̂) =

√∑
i(xi − x̂i)2∑

i x
2
i

, (10)

where x and x̂ refers to original and reconstructed target
plane, respectively. The curves shows that M-CoSaMP gives
a higher improvement at higher SNRs compared to sub-zero
SNRs; this is particularly because the MF output is also af-
fected by noise which in turn degrades the reconstruction by
M-CoSaMP. Nevertheless, fusing MF output gives a signifi-
cant reduction of error particularly due to the reduction of the
false alarms, which is also confirmed by visual inspection.
Furthermore, a large reduction in error is achieved by operat-
ing the CS-MF framework after integration; this is confirmed
from the substantial reduction in NRMS with an integration
over 20 pulses (Int-20+M-CoSaMP+MF; Fig. 4).

4. CONCLUSION

In this paper, we proposed a framework to fuse compressed
sensing and matched filtering that operates on single-pulse
radar return. We realized compressed sensing using chirp
signals and proposed an enhanced CS reconstruction al-
gorithm (M-CoSaMP) guided by matched filtering. The
numerical results show that M-CoSaMP outperforms tradi-
tional CoSaMP around zero and positive SNRs. However,
the performance of the M-CoSaMP approaches CoSaMP at
very high noise levels (very low SNRs). This is because the
output of matched filtering which acts as a guide degrades
with noise as well. Overall, the numerical results indicate
that CS-MF framework perform better than conventional CS
reconstruction algorithms.

Realizing the CS-MF framework in a single-pulse radar
imposes a limitation on the bandwidth-time product of the
transmitted chirp signal; this is a major concern as it ham-
pers pulse compression and hence the resolution in matched
filtering. Therefore, more theoretical and numerical studies
are needed to understand and implement this framework in a
practical radar system.
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