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ABSTRACT

We introduce a reconstruction formula that allows one to re-

cover an N -order tensor X ∈ R
I1×···×IN from a reduced set

of multi-way compressive measurements by exploiting its low

multilinear rank structure. It is proved that, in the matrix case

(N = 2), the proposed reconstruction is stable in the sense

that the approximation error is proportional to the one pro-

vided by the best low-rank approximation, i.e ‖X − X̂‖2 ≤
K‖X − X0‖2, where K is a constant and X0 is the corre-

sponding truncated SVD of X. We also present simulation

results indicating that the same stable behavior is observed

with higher order tensors (N > 2). In addition, it is shown

that, an interesting property of multi-way measurements al-

lows us to build the reconstruction based on compressive lin-

ear measurements of fibers taken only in two selected modes,

independently of the tensor order N . Simulation results us-

ing real-world 2D and 3D signals are presented illustrating

our results and comparing the reconstructions against the best

low multilinear rank approximations and the reconstructions

obtained by using the Kronecker-CS approach.

Index Terms— Compressed Sensing (CS), Kronecker-

CS, Low-rank tensors, Multi-way analysis, Tucker model.

1. INTRODUCTION

During the last years there has been an increased interest in

Compressed Sensing (CS), whose aim is to reconstruct a sig-

nal based on a set of measurements that is much smaller than

the original signal size. In classical CS, a signal x ∈ R
n

is reconstructed from a reduced set of m linear projections

(m < n) y = Φx, where the sensing matrix Φ ∈ R
m×n

is typically random or composed by few selected rows of the

Fourier transform matrix. In order to make the CS problem

solvable, it is necessary to impose constraints about the sig-

nal of interest, for example, it is assumed that the signal is
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compressible by decomposing it in a known basis (dictio-

nary), typically associated with a Wavelet transform. Many

algorithms were developed to solve this problem involving

iterative refinements of the solution by means of Greedy al-

gorithms or by minimizing the ℓ1-norm of the solution (see

[1] for an up to date summary of algorithms). These algo-

rithms have found many applications in diverse fields such as

in medical imaging, surveillance, machine learning, etc.

Recently, CS has been extended to problems involving the

recovery of multidimensional datasets, such as matrices and

tensors, by exploiting their associated low-rank structures and

considering different models for how the measurements are

taken. For example, in [2, 3] matrices are reconstructed from

limited information or undersampled measurements by solv-

ing a convex optimization problem. More recently, similar

ideas has been extended to tensor data allowing, for example,

to estimate missing entries in tensors [4, 5], to reconstruct

tensors from linear projections [6] and to perform tensor de-

noising [7].

In this paper we approach the problem of reconstructing

an approximately low multilinear rank tensor and we assume

that measurements are provided as a set of multilinear projec-

tions, i.e. multiplying each mode of the data tensor by a dif-

ferent sensing matrix. This model comes into scene naturally,

for example, in the case of sensing 2D images by means of a

separable operator as developed in [8, 9], i.e. by taking com-

pressive measurements of columns and rows separately, im-

posing a Kronecker structure on the sensing operator. In [10],

the Kronecker-CS model was proposed to deal with higher or-

der tensors and applied to hyperspectral 3D images and video

data. Recently, greedy algorithms specially designed to take

advantage of the Kronecker structure and block sparsity of

the representations were proposed in [11, 12] and applied to

a variety of signal processing problems in [13]. Also, in [20],

generalized tensor CS algorithms were developed using an

ℓ1-norm minimization approach. More recently, in [14], the

Kronecker sensing structure was used for tensor compression

and a method involving a low-rank model fitting, followed

by a per mode ℓ0/ℓ1 decompression, was proposed in order

to recover a low-rank tensor based on the PARAFAC tensor

decomposition model.
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1.1. Tensor Notation and Definitions

Tensors (multi-way arrays) are denoted by underlined bold-

face capital letters, e.g. X ∈ R
I1×···×IN is an N th order

tensor of real numbers. Matrices (2D arrays) are denoted

by bold uppercase letters and vectors are denoted by bold-

face lower-case letters, e.g. X ∈ R
I1×I2 and x ∈ R

I are a

matrix and a vector, respectively. The element (i1, . . . , iN )
of a tensor is referred as xi1...iN . The Frobenius norm of

a tensor is defined by ‖X‖F =
√

∑

i1
· · ·

∑

iN
x2
i1...iN

.

Given a tensor X ∈ R
I1×···×IN , its mode-n fibers are the

vectors obtained by fixing all indices except in, which cor-

respond to columns (n = 1), rows (n = 2), and so on.

Mode-n unfolding of a tensor X ∈ R
I1×···×IN yields a

matrix X(n) ∈ R
In×Īn (Īn =

∏

m 6=n Im) whose columns

are the corresponding mode-n fibers [15]. Given a mul-

tidimensional signal (tensor) X ∈ R
I1×···×IN and a ma-

trix Φ ∈ R
J×In the mode-n tensor by matrix product

Y = X ×n Φ ∈ R
I1×···×In−1×J×In+1···×IN is defined

by: yi1···in−1jin+1···iN =
∑In

in=1 xi1···in···iNφjin , with ik =
1, 2, ..., Ik (k 6= n) and j = 1, 2, ..., J . It is noted that this

corresponds to the product of matrix Φ by each one of the

mode-n fibers of X since Y(n) = ΦX(n).

The Tucker decomposition [16] provides a generalization

of the low-rank approximation of matrices to the case of ten-

sors, i.e. X = X̂+E, where E is an error tensor and the mul-

tilinear rank-(R1, . . . , RN ) tensor approximation X̂ (Tucker

model) is defined as follows:

X̂ = G×1 A1 ×2 · · · ×N AN , (1.1)

with core tensor G ∈ R
R1×···×RN and factor matrices An ∈

R
In×Rn (Rn ≤ In). A tensor X ∈ R

I1×···×IN is said

to have multilinear rank-(R1, . . . , RN ) if such a decompo-

sition is exact for a set of minimal values (R1, . . . , RN ), i.e.

X = X̂. We say that a tensor G ∈ R
R1×···×RN is full-

rank if all its unfolded matrices are full-rank matrices, i.e.

rank (G(n)) = Rn, ∀n. A particularly interesting case of

the Tucker model is when factor matrices An ∈ R
In×Rn are

chosen as the truncated matrices of left singular vectors as-

sociated with the unfolding matrices X(n). In this case, we

obtain the so called truncated Higher Order Singular Value

Decomposition (HOSVD) [16], which is denoted here as X0.

It is interesting to note that the HOSVD decomposition does

not provide the best low multilinear rank approximation, how-

ever, we have that ||X−X0||F ≤
√
N ||X−Xopt||F [17]. It is

noted that, in the matrix case, the SVD provides the best low

rank approximation having orthogonal factors and a diagonal

core matrix.

2. RECOVERY OF EXACT MULTILINEAR

RANK-(R1, . . . , RN ) TENSORS

We assume, for the moment, that we have available the fol-

lowing set of compressive multi-way measurements Zn ∈

R
R1×···×Rn−1×In×Rn+1×···×Rn (n = 1, 2, . . . , N ):

Zn = X×1Φ1 · · ·×n−1Φn−1×n+1Φn+1 · · ·×NΦN , (2.1)

where the sensing matrices Φn ∈ R
Rn×In (Rn << In) will

be specified later. Note that eq. (2.1) indicates that the origi-

nal tensor is multiplied by a set of different sensing matrices

in all modes except in mode-n (see Fig. 1 (top)). The follow-

ing theorem provides an explicit reconstruction formula, as

illustrated in Fig. 1 (bottom), and states the condition under

which the original tensor can be exactly recovered from this

set of multi-way measurements (see the proof in Appendix 6).

Multiway compressive measurements of a 3D tensor

Perfect reconstruction of a multilinear rank-(R
1
,R
2
,R
3
) 3D tensor

(   )

(   )

(   )

Fig. 1. Multi-way measurements and the reconstruction model.

Theorem 2.1. If tensor X ∈ R
I1×···×IN has multilinear

rank-(R1, . . . , RN) and matrices Φn ∈ R
Rn×In are such

that the tensor W = X×1Φ1×2 · · ·×N ΦN ∈ R
R1×···×RN

is full-rank, then the following reconstruction formula is ex-

act, i.e. X̂ = X:

X̂ = W ×1 Z1W
†

(1) · · · ×N ZNW
†

(N), (2.2)

where “†” stands for the Moore-Penrose pseudo-inverse

of a matrix and Zn ≡ (Zn)(n) ∈ R
In×R̄n , with R̄n =

∏

m 6=n Rm.

In some applications, the available measurements are

given as linear projections of mode-n fibers, e.g. in [8]

rows and columns of an image are measured through random

sensing matrices. It is interesting to note that all multi-way

measurements defined in eq. (2.1) (n = 1, 2, . . . , N ) can

be computed from linear measurements taken only in two

selected modes out of N . More explicitly, suppose we have

at our disposal the linear measurements in modes m1 and m2

(m1 6= m2) given by: Ym = ΦmX(m), with m = m1,m2;

then, it is easy to see that the mode-m unfolding matrix of

every multi-way measurement Zn, (n 6= m), can be written

as follows:

(Zn)(m) = Ym(ΦT
N ⊗ · · · ⊗ΦT

m+1 ⊗ΦT
m−1 ⊗ · · ·

· · · ⊗ΦT
n+1 ⊗ I⊗ΦT

n−1 ⊗ · · · ⊗ΦT
1 ).
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For example, for a 3rd order tensor (N = 3), if we have

available compressive measurements of columns (Y1 =
Φ1X(1) ∈ R

R1×I2I3 ) and rows (Y2 = Φ2X(2) ∈ R
R2×I1I3 ),

then the multi-way measurements can be computed as fol-

lows: (Z1)(2) = Y2(Φ
T
3 ⊗ I) ∈ R

R2×I1R3 , (Z2)(1) =
Y1(Φ

T
3 ⊗ I) ∈ R

R1×I2R3 and (Z3)(1) = Y1(Φ
T
2 ⊗ I) ∈

R
R1×R2I3 .

3. STABLE RECOVERY OF APPROXIMATELY LOW

MULTILINEAR RANK TENSORS

The reconstruction formula of eq. (2.2) gives an exact re-

construction when the original tensor has multilinear rank-

(R1, . . . , RN ) but, it becomes unstable when the tensor

deviates from the low multilinear rank model because the

pseudo-inverse ‖W†
n‖2 = 1/σRn

can be extremely large

given that σRn
(smallest singular value of W(n)) can be

arbitrarily small. In order to solve this problem, we pro-

pose a modified reconstruction formula by stabilizing the

pseudo-inverse. Given the SVD decomposition of a generic

matrix W = UΣVT , we define the modified pseudo-inverse

W∗ = VΣ∗UT where the diagonal matrix Σ∗ is defined by

σ∗
i =

{

1/σi if σi > τ
0 otherwise

(3.1)

It is noted that W∗ → W† as τ → 0 and ‖W∗‖2 ≤
1/τ . Also, the following properties are easily verified: I)

WW∗W = W+H with ‖H‖2 ≤ τ ; II) W∗WW∗ = W∗

and III) ‖WW∗‖2 = ‖W∗W‖2 = 1. Thus, the proposed

modified reconstruction is the following:

X̂ = W ×1 Z1W
∗
(1) · · · ×N ZNW∗

(N), (3.2)

The following theorem states an upper bound of the ap-

proximation error based on the modified reconstruction for-

mula of eq. (3.2) in the matrix case (N = 2).

Theorem 3.1. Let matrix X ∈ R
I×I be approximated by a

rank-R matrix X0 ∈ R
I×I , i.e. X = X0 +E where ‖E‖2 ≤

ǫ. If sensing matrices Φ1,Φ2 ∈ R
R×I are such that W =

Φ1XΦT
2 is non-singular and assuming τ > σR, where σR is

the smallest singular value of matrix W, then the following

reconstruction error upper bound holds true:

‖X− X̂‖2 ≤ aτ + bǫ+ c
ǫ2

τ
, with (3.3)

where constants a, b and c are defined below.

Proof. Let X0 = U1ΓU
T
2 be the rank-R SVD, for conve-

nience we introduce a change of bases for columns and rows

by defining An = Un(ΦnUn)
−1 ∈ R

I×R, and we obtain

X0 = A1GAT
2 with G = W −Φ1EΦT

2 , (3.4)

where W = Φ1XΦT
2 . Thus, the mode-1 measurement ma-

trix is Z1 = X(1)Φ
T
2 = X0Φ

T
2 + EΦT

2 = A1W(1) + F1,

with F1 = (I−A1Φ1)E(1)Φ
T
2 (where the fact that ΦnAn =

I was used). Using a similar analysis in mode-2, we obtain

that Z2 = A2W(2) + F2, with F2 = (I−A2Φ2)E
T
(2)Φ

T
1 .

Now, we observe that the reconstruction is given by

X̂ = Z1W
∗W(Z2W

∗T )T = Z1W
∗ZT

2 , (3.5)

where the properties of the modified pseudo-inverse matrix

were used. By inserting the expressions of Z1 and Z2 into eq.

(3.5) we arrive at:

X̂ = A1WW∗WAT
2 +A1WW∗FT

2 + (3.6)

F1W
∗WAT

2 + F1W
∗FT

2 .

Using the fact that WW∗W = W+H with ‖H‖2 ≤ τ and

eq. (3.4), we obtain:

X̂−X = −E+A1Φ1EΦT
2 A

T
2 +A1HAT

2 + (3.7)

A1WW∗FT
2 + F1W

∗WAT
2 + F1W

∗FT
2 .

In order to find a bound of ‖X− X̂‖2 we need to find bounds

for the norms of each one of the terms in the last equation.

Thus, we finally arrive at eq. (3.3), where constants are iden-

tified as follows:

a = ‖A1‖‖A2‖, (3.8)

b = 1 + ‖A1Φ1‖‖A2Φ2‖+ ‖A1‖(1 + ‖A2Φ2‖)‖Φ1‖
+ ‖A2‖(1 + ‖A1Φ1‖)‖Φ2‖, (3.9)

c = (1 + ‖A1Φ1‖)(1 + ‖A2Φ2‖)‖Φ1‖‖Φ2‖. (3.10)

Corollary 3.1. The optimal selection of the parameter τ , for

fixed ǫ and R, is τopt = ǫ
√

c
a

. In this case, the error bound of

eq. (3.3) becomes:

‖X− X̂‖2 ≤ ǫ(b+ 2
√
ac) = ǫK. (3.11)

Proof. The parameter τ should be chosen in order to mini-

mize the right hand term in eq. (3.3). By taking its derivative

and setting it to zero we obtain the optimal value τopt and, by

inserting it in eq. (3.3), we obtain the desired optimal bound

(3.11).

4. SIMULATION RESULTS

We have applied the reconstruction formula of eq. (3.2) to dif-

ferent 2D and 3D data sets. Gaussian compressive linear mea-

surements taken in modes 1 and 2. i.e. Y1 = Φ1X(1), Y2 =
Φ2X(2) (Φn ∈ R

R×I , n = 1, 2) were used to compute the

corresponding multi-way measurements defined in eqs. (2.1).

In order to compute the modified pseudo-inverse of matrices

W(n), the following heuristic value τ = ‖W(n)‖2/Rn was

chosen. It can be shown that the sampling ratio, i.e. the size of

non-redundant available measurements divided the size of the
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Fig. 2. Performance of reconstructions for 2D (top) and 3D (bottom)

data sets. Mean value and standard deviation over 100 Monte Carlo sim-

ulations are shown. PSNRs associated with the best low rank (truncated

SVD) and the best multilinear rank (obtained through the HOOI algo-

rithm) approximations are also shown for reference.

Original ‘Man’

image (1024x1024)

Kronecker-CS reconstruction

PSNR=25dB, Time=33 min

LR reconstruction

PSNR=30dB, Time=0.06 sec

Fig. 3. Reconstruction of a 2D data set example: Kronecker-CS so-

lution based on measurements W = Φ1XΦT

2
assuming a Kronecker

Wavelet dictionary (middle) and our Low-Rank approximation based on

measurements Y1 = Φ1X and Y2 = Φ2X
T (right). In both methods

R = I/2 was considered.

original signal is 2R
I
− (R

I
)2. In Fig. 2 (top), the PSNR (Peak

Signal to Noise Ratio) versus the the sampling ratio is shown

for for three different 2D images: “Man” (1024 × 1024),

“Lena” (512×512) and “Mondrian” (512×512); and three 3D

tensor datasets corresponding to hyperspectral images of nat-

ural scenes (1024×1024×32) [18] where Φ3 = I. As a refer-

ence, we show the PSNR obtained by using the best low-rank

approximation (2D case) and the best low multilinear rank

approximation (3D case). The latter was estimated by using

the Higher Order Orthogonal Iteration (HOOI) algorithm im-

plemented in [19]. It is interesting to note that, our method

not only provide stable reconstructions but also very robust

(very small standard deviation among realizations using dif-

ferent Gaussian matrices). In Fig. 3, we use R = I/2 and

compare the reconstructions provided by our method (right)

against the Kronecker-CS solution (middle), based on mea-

surements given by W = Φ1XΦT
2 and using a Basis Pur-

suit method implemented (SPGL1 algorithm) as proposed in

[9, 10]. It is clear that our method obtains much better results

with minimal computation effort. In this case, the sampling

ratio of the Kronecker-CS method 25%, on the other hand,

with our method we are able to use more effectively the avail-

able measurements corresponding to a sampling ratio of 75%,

for the same value of R.

5. CONCLUSIONS

We have provided a new reconstruction formula that exploits

the low multilinear rank structure of tensors assuming that

linear projections of its mode-n fibers are at our disposal in,

at least, two selected modes. Compared to the Kronecker-CS

technique available for 2D images [8, 9] and tensors [10, 11,

12], the present method has the following remarkable advan-

tages: I) It is very fast because it does not involve iterations

which makes it suitable for large-scale problems; II) It is sta-

ble, in the sense that tensors which are well approximated by

its associated low rank model are also well reconstructed by

the proposed method, and III) It is robust, in the sense that

the performance of the reconstruction does not depend on the

actual Gaussian sensing matrices.

6. APPENDIX

Proof of Theorem 2.1. Let us consider the exact HOSVD

decomposition X = Γ ×1 U1 ×2 · · · ×N UN , with core

tensor Γ ∈ R
R1×···×RN and orthogonal factors Un ∈

R
In×Rn , which exists because tensor X has multilinear

rank-(R1, . . . , RN ). We consider, for convenience, a change

of bases by assigning a new set of factors given by An =
Un(ΦnUn)

−1, thus, we have X = G×1 A1 ×2 · · · ×N AN

where G = X ×1 A
†
1 ×2 · · · ×N A

†
N = W. Note also

that, the multi-way measurements are now simplified to

Zn = W ×n An or, equivalently, Zn = AnW(n). Tak-

ing into account that W(1)W
†

(1)W(1) = W(1), the mode-1
version of eq. (2.2) is:

X̂(1) = A1W(1)

(

ZNW
†

(N) ⊗ · · · ⊗ Z2W
†

(2)

)T

, (6.1)

whose mode-2 unfolding matrix version becomes:

X̂(2) = Z2W
†

(2)W(2)

(

ZNW
†

(N) ⊗ · · · ⊗ Z3W
†

(3) ⊗A1

)T

.

Now, by substituting Z2 = A2W(2) in the previous equa-

tion and by repeating this process for the rest of modes n =
3, 4, . . . , N , we finally arrive at:

X̂(N) = ANW(N) (AN−1 ⊗ · · · ⊗A1)
T , (6.2)

which proves that X̂ = X.
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