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ABSTRACT

Recently, it has been demonstrated that Commercial Microwave Net-
works (CMN) can be considered as an opportunistic sensor networks
for rainfall monitoring, and in particular, for rain fields reconstruc-
tion. While different rainfall mapping techniques have been pro-
posed, their absolute performance has never been evaluated. This
paper presents a novel algorithm, which generates an accurate recon-
struction of rain field maps, given measurements from commercial
microwave links (ML). The accuracy is achieved by using the sparse
properties of the rain field, which enables an optimal and unique re-
covery of the rain rates along the ML, under certain regularity con-
ditions. We demonstrate that the performance of the proposed al-
gorithm is close to the actual measurements of the rain intensity in
a given location, and that it outperforms the reconstruction done by
the Radar, almost uniformly. The proposed approach is not restricted
to the specific application of rainfall mapping. It can also be used for
reconstructing images, especially sparse images, which are sampled
by projections on arbitrary lines.

Index Terms— Rain field mapping, Image reconstruction, Mi-
crowave links, Sparsity.

1. INTRODUCTION

The major atmospheric phenomenon affecting the propagation of a
wireless microwave signal’s strength, also known as RSL (received
signal level), is precipitation (mainly rain). The well-known empiri-
cal attenuation-rain rate relation is given by [1]:

A = αRβL (1)

where A (expressed in dB) is the measured RSL and R (expressed
in mm/h) is the path average rain rate along the microwave link.
L (expressed in km) is the link’s length and α, β are constants, de-
pending mainly on the link’s frequency and the drop size distribution
(in most cases β ≈ 1), as detailed in [2].

The RSL is measured by receivers located at cellular base-
stations distributed in space (see Fig. 1), with typical frequencies of
18-23 GHz, and lengths of 1-20 km. The measurements are given
in a pre-set temporal resolution, with known magnitude resolution
(quantization level). Since we are trying to reconstruct rain fields,
we inspect only significant rain events, thus, we may assume that the
measured RSL has high SNR, typical such RSL is shown in Fig. 2.
The depicted signal is the actual RSL measurements of a microwave
link provided by Cellcom company, after being pre-processed in
order to overcome non-linearities in the RSL, as discussed in [3].

The use of CMN for rain monitoring was first suggested in 2006-
[4]. Since then, the research had evolved greatly and was a subject

of increasing interest (e.g., [5, 6]). The main disadvantage of all
these methods, for rain fall mapping, is their ad-hoc nature, as none
of them were proven to satisfy a unique and optimal solution for
recovering the rain rates along the ML. Therefore, their accuracy
might be questionable.

In this paper we present a novel algorithm, which can generate
an accurate reconstruction of images in general, and rain field maps
in particular, as long as certain regularity conditions are satisfied.
One of the regularity conditions states that in order to guarantee a
faithful rain field reconstruction, the distribution of the ML in space
must satisfy certain spatial sampling conditions, as detailed in [7].
Moreover, an accurate reconstruction is achieved by using sparse
field modeling, which can yield an optimal and unique recovery of
the rain rates along the ML, or the pixels intensity along arbitrary
lines in general images.
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Fig. 1. Example of 52 links (solid lines) distributed in space, as
placed by the cellular provider Pelephone, in an area of 800 km2.
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Fig. 2. Example of 24 hours of measured RSL (dB), during a rain
event occurred on 07-January-2013, for a single 14 km link, operat-
ing in frequency of 21 GHz.

This paper is organized as follows: in Section 2 we demonstrate
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our new algorithm for optimal and unique recovery of the rain rates
along the ML, using sparse representation of the rain field. In Sec-
tion 3 we illustrate some interesting results, along with the proposed
algorithm performance. We conclude with a discussion and an alter-
native use of the proposed technique in Section 4.

2. OPTIMAL AND UNIQUE RAIN RATE RECOVERY
For any given set of RSL measurements from ML, the goal is to
construct the most accurate approximation of the rain rates along the
microwave links, and then to reconstruct the rain field in the links
vicinity. Suppose we have a set of observed rainfall-induced RSL
attenuations from M microwave links in a given geometry (denoted
as Aj , for j = 1, ....M ). We offer to modify (1), so that each link’s
RSL may be written as:

Aj = αjR
βj
j Lj ≈

∫
Lj

αjr
βj (x)dx (2)

Where r(x) (expressed in mm/h) is the true instantaneous rain rate
in a point x (along the link), Lj (expressed in km) is the jth link
length, and αj , βj are the known jth link constant parameters (as
described in [2]). Now, by dividing each link into nj (small enough)
equal segments, we may approximate the integral in (2) and derive
the following non-linear relation between each link’s RSL and the
actual rain rate along it (i.e., along an arbitrary line in space):

Aj ≈ αj
nj∑
i=1

r
βj
ij lij (3)

Where lij is defined as the length of the ith segment for the jth
link, and rij is the unknown rain rate in each lij segment. Thus, by
rearranging (3), we may derive the following relation:

qj(~rj) , Aj − αj
∑nj

i=1
r
βj
ij lij ≈ 0 (4)

Where in (4) we define: Lj =
∑nj
i=1 lij and nj = bLj/lijc, which

are regarded as the link’s length and the total number of segments
(for each jth link), respectively. ~rj is defined as the overall nj rain
rates, corresponding to each ith segment, along each jth link. Thus,
in order to achieve both good spatial resolution along the links, and
to yield an accurate approximation for the integral in (2), lij was
chosen to be ∼ 150 (meters), so that: lij << Lj . Since each
link’s length varies between 1-20 km, each nj varies between 6 to
133 segments. It is emphasized in the sequel that qj(~rj) (as in (4)) is
a function of the unknown rain rates along each jth link, where the
links are distributed in an arbitrary manner in space (e.g. in Fig. 1).

Hence, by defining ~q = [q1, q2 . . . qM ]T , we offer to apply the
Newton-Raphson iterative algorithm (as proposed by [8]) on (4) and
derive the following linear relation:

d~q

d~r
|~r=~rt (~rt+1 − ~rt) = J(~rt)(~rt+1 − ~rt) = −~q(~rt) (5)

where for each iteration number t: ~rt = [rt;1, rt;2 . . . rt;N ]T is
known and it is defined as all the N rain rates along all M links in
space, which are used for calculating the Jacobian matrix - J(~rt) and
the unknown rain rates - ~rt+1. We point out that an initialization is
required as well (i.e., ~r0). A possible ~r0 can be regarded as the mean
rain rate (as defined in (1)) for each one of the elements in ~r0, that

is, for each ith segment along each jth link: rij;t=0 = (Aj)
1
βj /αj .

Thus, by rearranging (5), we may formulate the following linear
system of equations:

J(~rt)~rt+1 = J(~rt)~rt − ~q(~rt) (6)

where (6) is solved iteratively until: ~rt+1 → ~rt. In other words, a
solution for the unknown rain rates along the links is obtained when:
‖~rt+1 − ~rt‖2 ≤ ε (for some pre defined small enough ε, e.g. ε =

e−6). In the sequel, by defining: D , J(~rt) , ~x , ~rt+1 and b ,
J(~rt)~rt − ~q(~rt), we may substitute the latter into (6) in order to
derive the following, compact, linear system of equations:

D~x = ~b (7)

Since each link is divided into nj segments, the system of equa-
tions derived in (7) is an underdetermined set of linear equations.
Thus, there are more unknown variables to calculate (denoted as N )
than given equations (denoted as M ), which indicate the number of
distributed links in space. This fact implies that an infinite number
of possible solutions is obtained, so conventional methods such as:
LS, WLS would not work [9]. Hence, a different approach is vital.

We offer to solve (7) in a new and sophisticated manner. We
propose to use the fact that the rain field is generally represented in a
sparse manner, as vastly cited in the literature (e.g., [10]). Namely, to
some extent of the rain field, it is reasonable to assume that the rain
field is mostly depicted in a sparse manner. Thus, we can assume that
the solution for ~rt+1 (denoted as ~x in (7)) would be a sparse solution.
Therefore, the best choice would be to solve the optimization ”L0

problem” [11]:

L0 : min ‖~x‖0, subject to: D~x = ~b (8)

where ‖~x‖0 ,
∑n
i=1 |xi|

0 (00 , 1).
As previously mentioned, because the goal is to yield an optimal

and unique solution for the rain rates along the ML, we state the
following theorem regarding the solution of the L0 problem:

Theorem 2.1 If a candidate solution for D~x = ~b has fewer than
1

µ(D)
nonzero elements, then it is necessarily the sparsest one possi-

ble, and any other solution must be denser.

Where in Theorem 2.1, µ(D) is defined as the mutual coherence of
the matrix D, which is given by:

µ(D) = max
i,j

|D(:, j)T ||D(:, i)|
‖D(:, i)‖2‖D(:, j)‖2

(9)

Where D(:, i) is the ith column of matrix D, and ()T indicates the
Transpose operator. The proof of Theorem 2.1 can be found in [11].

Since it is almost impossible to solve (8), we suggest solving the
optimization ”L1 problem”, which also encourages a sparse solu-
tion (as detailed in [11]), therefore it conforms to our problem for
finding a sparse representation of the rain rates along the ML (i.e.,
for finding a sparse solution for ~rt+1):

L1 : min ‖~x‖1, subject to: D~x = ~b (10)

where ‖~x‖1 ,
∑n
i=1 |xi|. Solving (10) is much easier, and many

methods had been proposed to solve this kind of problem (e.g.,
L1magic , L1Ls etc. [12]). In order to ensure a unique, optimal
recovery of the rain rates along the ML, we state the following
theorem regarding the L1 problem:

Theorem 2.2 If a candidate solution for D~x = ~b has fewer than
1
2
(1 + 1

µ
) non-zeros elements, then it is necessarily the unique opti-

mal solution both for the L0 and the L1 problems.
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The proof of Theorem 2.2 can also be found in [11].
If Theorem 2.2 condition is satisfied (for some solution), then

that solution is the optimal and unique solution of the problem at
hand. In case a solution satisfying the sparse condition could not be
reached, we may either use a transformation (e.g. wavelets trans-
form) [11], or (if the data is available) we may increase the radius
of the inspected area and use additional ML, so a sparser solution is
more reasonable.

The next step is to construct a 2D rain field map from the esti-
mated set - ~rt+1. That could be achieved by using either parametric,
or non-parametric interpolation methods. Regarding the paramet-
ric interpolation, we use a deterministic 2D Gaussian function for
the rain field modeling (with unknown parameters, e.g., unknown
Variance). Afterwards, we choose the model parameters which min-
imizes the sum of square difference between the derived model and
the actual measurements in space, which were obtained by solving
(10). The 2D reconstruction might be considered as perfect (or near
perfect), under certain sampling conditions, as further detailed in [3].

3. RESULTS
In this section we demonstrate the use of the proposed method for
creating accurate 2D rain field maps, using real RSL measurements,
which are available in different time and magnitude resolutions. The
reconstruction is compared with Radar maps, provided by the Israeli
Meteorological Service (IMS), which are available in a temporal res-
olution of 5 minutes. Rain gauges, which are considered as ”ground
truth” rain measurement instruments, are also provided by the IMS
and are available in a temporal resolution of 10 minutes. Each rain
gauge provides measurements of the amount of rain (in mm) in a
certain amount of time, per square meter in space. In this paper we
analyze two rain events which occurred in Israel in the last 3 years
around Ramle (34.88oE, 31.93oN ) region, with the following avail-
able data from the microwave links:

1. 18/January/2010: 26 operating ML, for a 24 hours of rain
event. The RSL measurements are available in a time resolu-
tion of 1 minute, with magnitude resolution of 1 [dB]. The
RSL measurements are provided by Pelephone.

2. 7-10/January/2013: 12 operating ML, for a 96 hours of rain
event. The RSL measurements are available as Min/Max
samples every 15 minutes time interval, with magnitude
resolution of 0.1 [dB]. The measurements undergo a pre-
processing stage, as detailed in [3]. The RSL measurements
are provided by Cellcom.

For each event we show an example of instantaneous snapshot
(as illustrated in Fig. 3) of the rain field reconstruction (in mm/h),
on an area of about 400 km2, derived by: the proposed algorithm
(using ML), the rain gauges, and the Radar. In Fig. 4 we demon-
strate the accumulated amount of rain (expressed in mm), for the
two events, given: the Radar (solid line), rain gauges (dashed line)
and the proposed algorithm using ML (dashed-dot line). It is ob-
vious that the performance of the proposed algorithm follows the
actual rain measurements closely in the inspected coordinate, while
the Radar provides overestimation of the rainfall in the same spot.

Table. 1 summarizes the performance analysis of the Radar and
the proposed algorithm once compared to the rain gauge in Ramle
coordinate. The inspected measures are: (1) Correlation; (2) Root
Mean Square Error (RMSE); (3) Relative Error (RE). Since each
method is available in a different time resolution, we regard (for the
performance evaluation) only the instantaneous rain rates recon-
structions, derived at the common times of all methods, that is, ev-
ery 30 minutes (i.e. at: 00:00,00:30...23:30).

Table 1. Performance Analysis Table
event (1)

Correlation RMSE (mm/h) RE
Proposed
Algorithm

0.87 2.07 2.85%

Radar 0.70 14.32 20.3%
event (2)

Correlation RMSE (mm/h) RE
Proposed
Algorithm

0.77 5.95 7.62%

Radar 0.67 12.18 16.65%

Fig. 3. Snapshots of the reconstructed rain fields - upper figures:
event (1), 18/January/2010, at 09:30 am; lower figures: event (2),
09/January/2013, at 16:00 pm. The operating ML are depicted by
black lines on the maps (left figures). Measurements from 2 rain
gauges are available (middle figures), and Radar maps of the same
snapshots are also provided (right figures).
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Fig. 4. The accumulated rain (in mm) in Ramle, for the two events,
derived by: The proposed algorithm, the rain gauges and the Radar.
Upper figure: event (1) ; Lower figure: event (2).
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4. DISCUSSION
A new method for rain field reconstruction from CMN is presented.
The method can yield a unique and optimal recovery of the rain rates
along the ML, given RSL measurements from CMN. The method
uses a nonlinear model linking between the RSL measurements and
the rain rates along the ML. Thus, by using a linearization procedure
and by utilizing the fact that the rain field is generally represented in
a sparse manner, we could recover an optimal and unique solution for
the rain rates along the ML, by solving the L1 optimization problem,
as long as the following conditions are satisfied:

1. The distribution of the links in space satisfy the spatial sam-
pling conditions proposed by [7]. Hence, ensuring a faithful
rain field reconstruction from the microwave links.

2. The sparse condition specified in Theorem 2.2 is satisfied.
Thus, allowing a unique and optimal recovery of the rain rates
along the microwave links.

3. The RSL measurements can be regarded as high SNR data for
rainfall mapping (e.g. in Fig. 2).

This paper also demonstrates some real data results and perfor-
mance analyses for rainfall mapping. The comparison was done be-
tween the proposed method and the Radar, for two main rain events
in a given location (Ramle). The results were conclusive: the pro-
posed method managed to outperform the Radar reconstruction in
all inspected measures, once comparing to actual rain intensities. In
both inspected events, the proposed algorithm showed an improve-
ment in: the correlation measure - about 10-17%; the RMSE - about
7-13 (mm/h); and the RE - about 9-16%.

For event (2), though we achieved much better results than that
of the radar, condition (1) was not satisfied due to the rather sparse
network deployed in space, as shown in Fig. 3. Thus, a faithful re-
construction from the ML could not be guaranteed, where in event
(1) it could, which may explain the finer performance achieved for
event (1) when using the proposed algorithm. Moreover, Condition
(2) was satisfied in about 90% of the inspected time periods, for
both events. Thus, not only proving the rightness in using the spar-
sity of the rain field, but also explaining the errors occurred in the
performance analysis, i.e., the remaining 10%, which did not satisfy
condition (2). In both events condition (3) was satisfied.

The method proposed here can be further extended for recon-
struction of general images (especially sparse images), when sam-
pled by projections on arbitrary lines, namely, some relation between
the image’s pixels, along arbitrary lines is known (e.g. in (3)). We
point out that an accurate reconstruction of a given image is possible
if conditions (1,3), from above, are satisfied. A possible applica-
tion for such scheme can be very beneficial (for example) in image
compression.

The example in Fig. 5 demonstrates how the proposed method
manages to achieve a near perfect reconstruction of a 256X256 im-
age. In the example presented, a linear relation between the pixels
intensity (along 50 arbitrary lines) is given by: Pk =

∑
i,j pij;k.

Where each Pk (k = 1, 2 . . . 50) indicates a linear summation of all
the pixels (denoted as pij;k) along each kth arbitrary line.

Fig. 5 depicts the reconstruction achieved from arbitrary lines
(for a rather sparse image), once using our proposed method. In the
image, the black lines indicate the arbitrary lines, in which the sum
of all pixels, along each line, is known. The reconstruction managed
to achieve a correlation (with respect to the original image) higher
than 0.99, and RMSE lower than e−6.

(a) Original image (b) Reconstructed image

Fig. 5. Example of an image reconstruction from a known linear
function along projections on arbitrary lines. Figure (a): the original
image with its corresponding lines. Figure (b): The reconstruction
achieved by using the Proposed Algorithm
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