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ABSTRACT

Compressed Sensing (CS) has been recently applied to di-

rection of arrival (DOA) estimation, leveraging the fact that

a superposition of planar wavefronts corresponds to a sparse

angular power spectrum. However, to apply the CS frame-

work we need to construct a finite dictionary by sampling the

angular domain with a predefined sampling grid. Therefore,

the target locations are almost surely not located exactly on a

subset of these grid points. This leads to a model mismatch

which deteriorates the performance of the estimators. In this

paper we take an analytical approach to investigate the effect

of such grid offsets on the recovered spectra. We show that

each off-grid source can be well approximated by the closest

two neighboring points on the grid. We propose a simple and

efficient scheme to estimate the grid offset for a single source

or multiple well-separated sources. We also discuss a numer-

ical procedure for the joint estimation of the grid offsets of

closer sources. Simulation results demonstrate the effective-

ness of the proposed methods.

1. INTRODUCTION

Direction of arrival (DOA) estimation has been an active

field of research for many decades [1]. Estimated DOAs are

used in various applications like localization of the transmit-

ting sources, channel modeling, tracking and surveillance in

Radar, and many others. If the field is modeled as a super-

position of a few planar wave-fronts, the DOA estimation

problem can be expressed as a sparse recovery problem and

the Compressed Sensing (CS) framework can be applied.

Many powerful CS-based DOA estimation algorithms

have been proposed in recent years [2, 4, 6, 5]. CS based

DOA estimation may be an attractive solution with respect

to the hardware complexity of the receiving arrays and the

complexity of the numerical solution (compared to Maximum

Likelihood algorithms) while being insensitive to source cor-

relation and allowing arbitrary array geometries (as opposed

to most subspace-based estimators).

However, they all face one common problem. Although

the model is sparse in a continuous angular domain, to apply

This work was supported by the International Graduate School on Mo-

bile Communications (MOBICOM), Ilmenau, Germany.

the CS framework we need to construct a finite dictionary by

sampling this domain with a predefined sampling grid. There-

fore, the target locations are almost surely not located exactly

on a subset of these grid points. This leads to a model mis-

match that results in a degradation of the performance.

It may seem that the solution is to make the grid as fine as

possible. However, this violates the restricted isometry prop-

erty (RIP) [14] of the system and deteriorates the CS recovery

process. Early approaches for CS based DOA estimation sug-

gest to tackle this off-grid problem by simply refining the grid

adaptively around the candidate targets found with an initial,

mismatched grid [2] or taking centroids of the dominant coef-

ficients as the exact location [13]. One type of more sophisti-

cated solutions models the mismatch error explicitly and fits it

to the observed data statistically [3, 7]. Other approaches deal

with the continuous problem directly and propose some mod-

ifications to the recovery algorithm to deal with such scenario,

i.e., interpolating between grid points [18], atomic norm min-

imization [17], or perturbed OMP [8]. Note that this typically

increases the computational complexity significantly.

In this paper we take an analytical approach to investigate

the effect of recovering the spectrum of sources not contained

in the dictionary. Unlike earlier works that have provided

a quantitative analysis of the approximation error [16, 20],

we examine the specific shape of the resulting spectrum. We

show that for one off-grid source the recovered spectrum is

not sparse but it can be well approximated by the closest two

dictionary atoms on the grid and their coefficients can be ex-

ploited to estimate the grid offset. We then extend our model

to consider multiple sources. When they are sufficiently sepa-

rated, the offset estimation strategy can be applied separately.

For closely spaced sources we propose an efficient joint esti-

mation strategy and demonstrate its performance in numerical

simulations.

2. DATA MODEL

Consider K narrow-band planar waves impinging on an array

of M elements. At the array side, the observations are given

by

y(t) = K∑
k=1

a(θk) ⋅ sk(t) +n(t), (1)
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where a(θ) ∈ CM is the array manifold, θk is the DOA vec-

tor, sk(t) are the amplitudes of the impinging waves at time t,

and n(t) is the additive white Gaussian noise (AWGN) con-

taminating the observations.

One way to interpret the scenario in (1) is that the power

received at the array sensors concentrates at few locations

θk from all possible DOAs θ, which means that the received

power is “sparse” in the angular domain. This sparsity moti-

vates the use of compressed sensing for DOA estimation. The

CS based DOA estimation problem is formulated as [2]

y(t) =As(t) +n(t), (2)

where A ∈ CM×N is the sampled array manifold (dictionary).

The number of grid points is given as N = M ⋅ P , P > 1

where P is the oversampling factor representing how fine the

grid is. Note that P is sometimes also referred as the “su-

per resolution factor” [15]. We consider this term misleading

since increasing P does not actually improve the resolution

(which is limited by M , as also shown in [15]).

In this paper we assume a uniform linear array (ULA)

of isotropic sensors1. Moreover, in order to achieve a uni-

form mutual coherence between columns of A, we sample

the manifold uniformly in the spatial frequency domain in-

stead of the angular domain. For a ULA with half-wavelength

inter-element spacing, the spatial frequency µ is defined as

µ = π ⋅ sin θ. The dictionary is then sampled at the points

µn =∆ ⋅ (n − 1), n = 1,2, . . . ,N , where ∆ = 2π
N

.

3. ANALYTICAL STUDY OF THE OFF GRID

PROBLEM

3.1. One source off the grid

As mentioned earlier, no matter how fine the grid is, there will

always be sources that do not lie exactly on one of the grid

points. In this section, we analyze this problem both quali-

tatively and quantitatively. For simplicity, let us start by one

source off the grid. In the absence of noise, this simplifies (1)

into y = ã ⋅ s, where ã = a(µL + ǫ ⋅∆). Here, L ∈N, i.e., µL

represents the next “left” grid point. Moreover, 0 ≤ ǫ < 1 is

the grid offset, expressed as a fraction of ∆.

In general, y is not 1-sparse in A. In fact, an exact repre-

sentation of y in A requires M non-zero coefficients. More-

over, an arbitrary subset of M out of N coefficients could be

used to find such a representation.

In the CS framework, we often employ an ℓ1-type regu-

larization to find a sparse solution. For instance, the Basis

Pursuit method [9] solves the following problem

min ∥α∥1 s.t. y =A ⋅α. (3)

1This assumption is made for simplicity and should be seen as a first

step only. CS-based DOA estimation can only be put to practice if A is

constructed by considering the physical effects for a realistic array [21]. We

have shown an extension to a practical scenario with a circular array under a

polarimetric setting in a more recent study [22].
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Fig. 1. Recovered spectrum using for one source off the grid

(M = 8, P = 4, ǫ = 0.3) using BP [9].

The purpose of this regularization is to concentrate the en-

ergy on as few coefficients as possible. This suggests that the

solution to (3) chooses the closest neighboring atoms on the

grid to represent the off-grid source. To support this intuition,

Fig. 1 demonstrates the resulting spectrum when solving (3)

using BP [9] for M = 8, P = 4 (i.e., N = 32), and ǫ = 0.3. We

observe that, as expected, most of the energy is concentrated

on the two closest grid points.

Motivated by this finding, we investigate the approxima-

tion of ã using the two neighboring atoms on the grid, i.e.,

a(µL + ǫ ⋅∆) = [a(µL),a(µL+1)] ⋅ [α1

α2

] + aRes (4)

where aRes is the residual that is not representable by the

neighbors. The coefficients α1 and α2 are found by solving

min
α1α2

∥ã − [a(µL),a(µL+1)] ⋅ [α1

α2

]∥
2

2

. (5)

After some algebraic manipulations, we can express the ex-

plicit solution to (5) as

α1(ǫ) = D(0) ⋅D(ǫ) −D(1) ⋅D(1 − ǫ)
D(0)2 −D(1)2 ⋅ e⋅ǫ⋅π

(M−1)
M ⋅P , (6)

α2(ǫ) = D(0) ⋅D(1 − ǫ) −D(1) ⋅D(ǫ)
D(0)2 −D(1)2 ⋅ e−⋅(1−ǫ)⋅π

(M−1)
M ⋅P ,

(7)

where D(x) = sin (π⋅x
P
)

sin ( π⋅x
M ⋅P
) . (8)

Fig. 2 shows the behavior of the calculated coefficients with

varying the offset ǫ for P = 2 and 4. It can be shown that

lim
P→∞

α1(ǫ) = 1 − ǫ, (9)

lim
P→∞

α2(ǫ) = ǫ, (10)

i.e., as P increases (and so N ), α1 and α2 becomes more

linear with ǫ.

To assess the accuracy of our two term approximation,

the relative approximation error (AE) has been examined. We

define

AE(ǫ,M,P ) .= ∥aRes∥22
∥ã∥2

2

. (11)
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Fig. 2. Behavior of the approximation coefficients α1 and α2

for M = 8.
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Fig. 3. Worst-case approximation error AE(1/2,M,P ) vs.

M and P .

It can be shown that the AE is convex and symmetric in ǫ

and that AE(ǫ,M,P ) ≤ AE(1/2,M,P ), i.e., as expected,

the worst case error is at ǫ = 0.5. Moreover, a closed form

expression for this worst case error is given by

AE(1/2,M,P ) = 1 − 4 sin2 ( π
2P
) cot ( π

2MP
)

M2 sin ( π
MP
) +M sin ( π

P
) , (12)

which we depict in Fig. 3. In fact, Fig. 3 shows that (12) in-

creases mildly with M and decreases rapidly with increasing

P (0.01 at P = 2 and 0.001 at P = 3). In the limits we have

lim
P→∞

AE(1/2,M,P ) = 0, (13)

lim
M→∞

AE(1/2,M,P ) = 1 − 4 (1 − cos ( π
P
))P 2

π (P sin ( π
P
) + π) . (14)

From the results of (6) and (7), we were inspired2 to define

a simple estimator for ǫ given by

ǫ̂ = α2

α1 + α2

. (15)

Note that in the absence of noise we have from (9) and (10)

lim
P→∞

ǫ̂ = ǫ. (16)

3.2. Multiple Sources

So far, we have discussed a single source only. When mul-

tiple sources are present, their mutual influence depends on

2Note that similar estimators are used in the literature for frequency inter-

polation [10, 11]. However, they have been derived in a completely different

context and it was not expected that such techniques are applicable to a spec-

trum recovered by ℓ1-minimization.
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Fig. 4. Recovered spectrum for two far sources (M = 8, P =
4, ǫ1 = ǫ2 = 0.3).

the correlation between the array steering vectors. As long

as the distance between the sources is ≫ P grid points they

are almost orthogonal and hence the mutual influence is very

low. In this case, they can be treated independently and the

estimator (15) can be applied separately. This is exemplified

in Fig. 4 which depicts such a case (M = 8, P = 4, µ1 = 6.3∆,

µ2 = 15.3∆).

This strategy fails for any pair of sources that has a dis-

tance which is close to (or even below) P grid points. Note

that it has recently been shown that the CS-based recovery of

the correct support can only be guaranteed when the sources

have a spacing that is ≥ P grid points [15]3. Let us assume

that the support has been estimated correctly, i.e., for two

sources located at µk = (Lk − 1 + ǫk) ⋅∆, k = 1,2 we have

found the left neighboring grid points L1 and L2. Then, the

best two-term approximation for one source shown in (5)

can be extended to the joint estimation of the grid offsets for

two sources by considering the four neighboring grid points

L1, L1 + 1, L2, and L2 + 1. These provide four coefficients

α = [α1, α2, α3, α4]T ∈ C4×1 which depend on both offsets

ǫ1 and ǫ2. Although we have not found a closed-form solu-

tion like (15) we propose a simple numerical procedure to

estimate ǫ1 and ǫ2 from α.

To this end, let d(x) = [D(x),D(x−1),D(x−d),D(x−
d − 1)]T ∈ R

4×1, D0 = [d(0),d(1),d(d),d(d + 1)] ∈
R

4×4, and D1 = [d(ǫ1),d(ǫ2 + d)] ∈ R
4×2, where d =

L2 − L1. Moreover, we define ᾱ = D0 ⋅ Φ ⋅ α, where

Φ = diag {[1 eπ
M−1
M ⋅P eπd

M−1
M ⋅P eπ(d+1)

M−1
M ⋅P ]}. Then it

can be shown that in the absence of noise, ᾱ is a linear com-

bination of d(ǫ1) and d(ǫ2 + d). Therefore, we can obtain ǫ1
and ǫ2 by minimizing

J(ǫ1, ǫ2) = ∥ᾱ −D1 ⋅D
+
1
⋅ ᾱ∥2

2
, (17)

i.e., tuning ǫ1, ǫ2 such that the overlap of ᾱ with the col-

umn space of D1 is maximized. Note that the optimization

problem (17) is easy to solve: the search region is bounded

to [0,1] × [0,1] and by visual inspection it appears to be

a smooth and convex shape with a clear unique minimum

within this range. Therefore, the solution to (17) takes con-

siderably less time than the sparse recovery algorithm that is

run before to estimate the support.

3In fact, a spacing of P grid points corresponds to a distance in spatial

frequency of 2π/M radians, which is referred to as the “Rayleigh resolution

limit” [1].
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Fig. 5. MSE vs. SNR for P = 6, one source at µ = 7.1 ⋅∆
For more than two sources, the extension is straightfor-

ward. From a first CS-based recovery with N grid points,

we obtain an initial coarse estimate of the sources’ locations.

Based on it we identify clusters of sources that are closely

spaced where the different clusters are sufficiently far apart so

that they can be treated independently. For each cluster, we

apply a joint estimation of the grid offsets using the single-

source strategy shown in (15), the two-source strategy from

(17), or an appropriately extended K-source strategy, depend-

ing on the number of sources per cluster.

4. SIMULATION RESULTS

In this section, we evaluate our algorithm for CS-based DOA

estimation off the grid. We consider M = 8 sensors and

a single snapshot t. The noise samples are drawn from a

zero mean circularly symmetric complex Gaussian distribu-

tion with variance PN. The symbols sk are generated accord-

ing to sk = eϕk , where ϕk are i.i.d. uniformly distributed

random variables in [0,2π]. We depict the mean square esti-

mation error of the spatial frequencies vs. the SNR = 1/PN.

We compare the following strategies: “Nearest”, “2-term

single” and “2-term joint” refer to choosing the nearest grid

point, applying (15), and solving (17), respectively, where the

support has been estimated using the BP algorithm [9]. For

reference, we depict the performance of the OGSBI algorithm

[7] and the ℓ1-SVD [2] using three refinement steps. Note

that the computational complexity of both reference schemes

is higher than our proposed solutions. We also show the de-

terministic Cramér-Rao Bound (CRB).

Fig. 5 shows the performance for a single source at 7.1 ⋅∆

and P = 6. We observe that the estimator (15) successfully

finds the grid offset and the resulting estimator achieves the

CRB.

In the case of two sources, Fig. 6 shows the MSE vs. SNR

for a case where the spatial separation µ2 − µ1 = 2 ⋅ P ⋅ ∆,

i.e., the sources are relatively far from each other. In this

case, applying the estimator (15) separately provides accu-

rate estimates with a small bias becoming visible only at very

high SNRs. Moreover, the solution of (17) achieves the CRB.

Fig. 7 depicts the MSE vs. the spatial separation ∆µ where

the SNR is fixed to 30 dB and we have µ1 = 0.75 ⋅∆, µ2 =
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Fig. 6. MSE vs. SNR for P = 8, two sources at µ1 = 12.4 ⋅∆,

µ2 = 28.4 ⋅∆, i.e., µ2 − µ1 = 2 ⋅ P ⋅∆
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Fig. 7. MSE vs. ∆µ for P = 4, µ1 = 0.75 ⋅∆, µ2 = µ1 +∆µ

µ1 + ∆µ. We observe that the single-source approximation

scheme works reasonably well until a separation of P ⋅ ∆

which is the lower limit derived in [15]. Below it, the mutual

influence becomes too strong. On the other hand, the joint

estimator still works very well for distances below this limit

and outperforms the more complex ℓ1-SVD and the OGSBI

algorithm.

5. CONCLUSION

In this paper we address the problem of CS-based DOA es-

timation for off-grid sources. We study the spectrum in the

case of off-grid sources qualitatively and find that most of

the energy of the off-grid source after reconstruction is con-

centrated in the two neighboring grid points. Based on this

observation, we derive the best two-term approximation co-

efficients explicitly and show that the approximation error is

very small for N > M . Moreover, based on the asymptoti-

cally linear behavior of the coefficients with the grid offset,

we propose a very simple scheme to estimate the grid offset

based on the observed coefficients. For multiple sources we

show that this simple scheme still works well when they are

sufficiently spaced. For closely spaced sources, we propose

a numerical procedure for the joint estimation of their offsets

from the recovered spectra at their neighboring grid points.

Numerical simulations demonstrate the effectiveness of the

proposed schemes.
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