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ABSTRACT

Exemplar-based clustering methods partition the data space
and identify the representative, or the exemplar, of each
cluster. With the number of clusters adaptively determined,
exemplar-based clustering methods are appealing since they
avoid or alleviate the difficult task of estimating the latent
parameters in case of complex models and high dimension-
ality of the data. Most exemplar-based clustering methods
are based on generative models, where the exemplars serve
as the parameters of the generative models. However, gen-
erative models do not consider the discriminative capability
of the cluster boundaries explicitly described in discrim-
inative models. In this paper, we present Discriminative
Exemplar Clustering (DEC), that improves the discriminative
power of exemplar-based clustering method by minimizing
the misclassification error of the nonparametric unsupervised
plug-in classifier while maintaining the appealing property of
exemplar-based clustering. The optimization of DEC is per-
formed in a pairwise Markov Random Field. Experimental
results on synthetic and real data demonstrate the effec-
tiveness of our method compared to other exemplar-based
clustering methods.

Index Terms— Exemplar-based Clustering, Pairwise
Markov Random Fields

1. INTRODUCTION

Clustering is an important data analysis method which parti-
tions data space into a set of self-similar clusters. Exemplar-
based clustering methods, mostly based on generative mod-
els, identify the representative, or the exemplar of each clus-
ter while partitioning the data. The exemplars always serve
as parameters of the parametric distributions, e.g. the means
of the mixture components. Therefore, exemplar-based clus-
tering methods are appealing since they either avoid the dif-
ficult task of estimating the latent parameters of generative
models in case of complicated parametric model and high di-
mensionality of the data, such as Affinity Propagation [1] and
its succeeding algorithms [2, 3]; or alleviate this problem by
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only estimating the mixture coefficients of the mixture mod-
els such as [4] and its accelerated version [5].

On the other hand, discriminative clustering methods ex-
plicitly search for the cluster boundaries for optimal data par-
tition, and many of them seek for the cluster boundaries by
explicitly learning a classifier from unlabeled data. [6] learns
a max-margin two-class classifier in an unsupervised manner,
and their method is known as unsupervised SVM whose the-
oretical property is further analyzed in [7]. Also, [8] and [9]
learn the kernelized Gaussian classifier and the kernel logis-
tic regression classifier respectively. and adopt the entropy of
the posterior distribution of the class label by the classifier to
measure the quality of the learned classifier.

[10] shows the effectiveness of combining generative and
discriminative models in classification tasks, and recent work
[11] further demonstrates the convincing performance of
coupled generative and discriminative models for clustering.
Most exemplar-based clustering methods innately lacks the
advantages of discriminative models which explicitly maxi-
mize the gap between different clusters, so that we propose
to enhance the exemplar-based clustering with discrimination
capability aiming to improve the clustering performance. To
achieve this goal, we formulate a novel discriminative clus-
tering model by minimizing the misclassification error of un-
supervised classification (MEUC) using the plug-in classifier.
MEUC is incorporated into the exemplar-based clustering
scheme to form a new clustering algorithm called Discrim-
inative Exemplar Clustering (DEC), while maintaining the
appealing property of exemplar-based clustering.

2. THE MODEL

Let (X,Y ) be a random couple with joint distribution PXY ,
where X ∈ X ⊂ IRd is a vector of d features and Y ∈
{1, 2, ..., Q} is a label indicating the class to which X
belongs. Q is finite and can be unknown. The sample
(x1, y1), . . . , (xn, yn) are independent copies of (X,Y ),
{yl}nl=1 are missing, and we aim to perform clustering on
observed data {xl}nl=1.
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2.1. Exemplar-Based Clustering

In this subsection we introduce Affinity Propagation (AP) [1],
which is a representative of nonparametric exemplar-based
clustering methods. In AP, each xl is associated with a cluster
indicator el (l ∈ {1, 2, ...n} , el ∈ {1, 2, ...n}), indicating that
xl takes xel as the cluster exemplar. Data from the same clus-
ter share the same cluster exemplar. We define e , {el}nl=1.
Moreover, a configuration of the cluster indicators e is con-
sistent iff el = l when em = l for any l,m ∈ 1..n, meaning
that xl should take itself as its exemplar if any xm take xl as
its exemplar. It is required that the cluster indicators e should
always be consistent.

Affinity Propagation [1], a representative of the exemplar-
based clustering methods, solves the following optimization
problem

min
e

n∑
l=1

Sl,el s.t. e is consistent (1)

Sl,el is the dissimilarity between xl and xel , and note that Sl,l

is set to be nonzero to avoid the trivial minimizer of (1). The
objective function (1) ensembles that of K-means clustering,
and AP is based on generative models. In order to improve the
discriminative power of such exemplar-based clustering, we
propose a novel discriminative clustering model by minimiz-
ing the misclassification error of unsupervised classification
(MEUC) using the plug-in classifier below.

2.2. Discriminative Clustering by Minimizing the Mis-
classification Error of Unsupervised Classification (MEUC)

2.2.1. Learning Unsupervised Classifier from Unlabeled Data

The training scheme via hypothetical labeling introduced by
the unsupervised SVM [6, 7] forms the basis for learning a
classifier from unlabeled data in a principled way. With any
hypothetical labeling ŷ = {ŷl}nl=1, we can build the corre-
sponding training data Sŷ = {xl, ŷl} for a potential classi-
fier. Let Sŷ,i = {xl : ŷl = i, 1 ≤ l ≤ n} be the data with
label i, then {Sŷ,i}Qi=1 is a partition of the data, and two label-
ings are equivalent in the sense of clustering if they produce
the same data partition. In this way, the quality of a label-
ing ŷ, or equivalently a data partition, can be evaluated by
the misclassification error of the classifier learned from the
corresponding training data Sŷ. Unsupervised SVM [6, 7]
perform clustering by searching for the hypothetical label-
ing with minimum associated misclassification error of SVM.
We use the same training scheme as unsupervised SVM to
learn the unsupervised plug-in classifier, aiming to find the
hypothetical labeling with minimum misclassification error
of the plug-in classifier. Note that it is difficult to adapt un-
supervised SVM and other popular discriminative clustering
methods based on information maximization [8, 9, 12] to the
exemplar-based clustering scheme since all such methods es-
timate the parameters of the classifier by continuous optimiza-

tion without exemplar finding. In contrast, the misclassifica-
tion error bound for the unsupervised plug-in classifier is ex-
pressed in terms of pairwise similarities between data points,
which can be straightforwardly incorporated into the nonpara-
metric exemplar-based clustering scheme.

2.2.2. Objective Function of MEUC

By the training scheme for unsupervised classifier, the mis-
classification error (or the generalization error) of the unsu-
pervised classifier FSŷ

learned from the training data Sŷ is:

R
(
FSŷ

)
, Pr

[
(X,Y ) : FSŷ (X) ̸= Y

]
(2)

FSŷ
(X) is the classification function which returns the class

label of a sample X . In this paper we investigate the case
when FSŷ

is the plug-in classifier PISŷ
:

PISŷ (X) = argmax
1≤i≤Q

η̂
(i)
n,hn

(X) (3)

where η̂
(i)
n,hn

is the nonparametric kernel estimator of the
regression function η(i). To evaluate the quality of a given
hypothetical labeling ŷ, we assume that {ŷl} is the miss-
ing latent labeling, i.e. {ŷl} = {yl}, and then estimate
(2) with respect to a collection of possible joint distribu-
tions PXY . Before stating the generalization error bound
theorem, we introduce notations and assumptions used in
the new discriminative clustering model. Suppose PX is
the induced marginal distribution of X , and f is the proba-
bilistic density function of PX which is a mixture of class-
conditional densities.

(
f (i), π(i)

)
is the class-conditional

density function and the prior of class i (f =
Q∑
i=1

π(i)f (i)).

η(i) (x) is the regression function of Y on X = x, i.e.

η(i) (x) = Pr [Y = i |X = x ] = π(i)f(i)(x)
f(x) . For the sake

of the consistency of the kernel density estimators, there
are further assumptions on the marginal density and class-
conditional densities:

(A) f is bounded, i.e. 0 < fmin ≤ f ≤ fmax, and f ∈
Σγ,c

(B) {f (i)} is bounded, i.e. 0 < f
(i)
min ≤ f (i) ≤ f

(i)
max, and

f (i) ∈ Σγ,ci , 1 ≤ i ≤ Q. where Σγ,c is the class of Hölder-γ
smooth functions with Hölder constant c:

Σγ,c , {f : IRd → IR | |f (x)− f (y)| ≤ c∥x− y∥γ}, γ > 0

and we denote by PX the the collection of marginal distribu-
tions that satisfy assumption (A), and denote by PX|Y the col-
lection of class-conditional distributions that satisfy assump-
tion (B). We then define the collection of joint distributions
PXY,ŷ that PXY belongs to, which specifies the prior of the
classes and requires {xl} be generated according to PX , Sŷ,i

be generated according to PX|Y=i and the marginal density
and class-conditional densities satisfy assumption (A)-(B):

PXY,ŷ , {PXY | PX ∈ PX , {PX|Y =i} ∈ PX|Y , {xl}
i.i.d.∼ PX ,

Sŷ,i
i.i.d.∼ PX|Y =i and π(i) =

|Sŷ,i|
n

for 1 ≤ i ≤ Q} (4)
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The objective of our discriminative clustering model is to
find the optimal labeling ŷ that minimizes the supremum of
the associated misclassification error over the collection of the
joint distributions PXY,ŷ:

min
ŷ∈Ŷ

sup
PXY,ŷ

R
(
FSŷ

)
(5)

where Ŷ = {ŷ | #{ŷl=i}
n ≥ π(0), 1 ≤ i ≤ Q} is the set

of balanced labelings (avoiding cluster imbalance), π(0) is a
positive constant. Theorem 1 gives the tight generalization
bound for the error of the unsupervised plug-in classifier:

Theorem 1. (Generalization Error of the Plug-In Classifier)
Let the kernel bandwidth be hn = Θ(n− (1−ε)

d+2γ ) for any ε ∈
(0, 1). With probability greater than 1−QLhE

n , the general-
ization error of the plug-in classifier (3) satisfies

sup
PXY

R (PIS) ≤
1

n2

∑
l,m

θlmGlm,hn +O
(
n
− (1−ε)γ

d+2γ

)
(6)

where θlm = 1I{yl ̸=ym} is a class indicator function and

Glm,hn = Ghn (xl,xm) , Gh (x, y) =
Kh (x− y)

f̂
1
2
n,h (x)f̂

1
2
n,h (y)

, (7)

L,E are constants, f̂n,hn is the kernel density estimator of
f :

f̂n,h (x) =
1

n

n∑
l=1

Kh (x− xl), (8)

where Kh (·) is the isotropic Gaussian kernel with bandwidth

h: Kh (x) = 1
2πd/2hd e

− ∥x∥2

2h2 , η̂n,hn in (3) is η̂
(i)
n,hn

(x) =
n∑

l=1

Khn (x−xl)1I{yl=i}

nf̂n,hn (x)
, and the bound in (6) is tight.

Based on Theorem 1, by omitting the scalar 1
n2 and the

term O
(
n− (1−ε)γ

d+2γ

)
that is infinitesimally small with suffi-

ciently large n, we relax the objective of MEUC (5) to

min
ŷ∈Ŷ

∑
l,m

θlmGlm,hn (9)

Glm,hn can be interpreted as the similarity between xl and
xm, and the optimization of (9) encourages minimum sum of
similarity between data points from different clusters.

2.3. Discriminative Exemplar Clustering

In this section we formulate Discriminative Exemplar Clus-
tering (DEC), which improves the discriminative capabil-
ity of exemplar-based clustering (Section 2.1) by incorpo-
rating the discriminative clustering model MEUC which
minimizes the misclassification error of the unsupervised
classification using the plug-in classifier (Section 2.2). Since∑
l,m

θlmGlm,hn in (9) can be rewritten as
∑
l,m

θ̃lmGlm,hn where

θ̃lm = 1I{el ̸=em} and {el} are the cluster indicators, it is
straightforward to combine MEUC (9) and exemplar-based
clustering (1) as

minŷ∈Ŷ

n∑
l=1

Sl,el + λ
∑
l,m

(
θ̃lmGlm,hn

)
s.t. e is consistent

To avoid imbalanced data partition, we use the within-cluster
sum of dissimilarities to control the size of clusters by set-
ting Sl,el = exp (−Glel,hn). Moreover, to ensure consistent
cluster indicators, we design the penalty function ρlm:

ρlm (el, em) =

{
∞ em = l, el ̸= l or el = m, em ̸= m
0 otherwise

DEC minimizes the following relaxed objective function

Ψ(e) =

n∑
l=1

Sl,el + λ
∑
l,m

(
θ̃lmGlm,hn + ρlm (el, em)

)
(10)

where λ is a balancing parameter. Due to the form of (10), we
construct a pairwise Markov Random Field (MRF) represent-
ing the unary term ul and the pairwise term θ̃lmGlm,hn + ρlm
as the data likelihood and prior respectively. The variables e
are modeled as nodes and the unary term and pairwise term in
(10) are modeled as potential functions in the pairwise MRF.
The minimization of the objective function is then converted
to a MAP (Maximum a Posterior) problem in the pairwise
MRF. (10) is minimized by Max-Product Belief Propagation
(BP) [13] in two steps:

Message Passing: BP iteratively passes messages along
each edge according to

mt
lm (em) = min

el

(
M t−1

lm (el) + θ̃lmGlm,hn + ρlm (el, em)
)

(11)

M t
lm (el) ,

∑
k∈N (l)\m

mt
kl (el) + ul (el) (12)

where mt
lm is the message sent from node l to node m in

iteration t, N (l) is the set of neighbors of node l.
Inferring the optimal label: After the message passing

converges or the maximal number of iterations is achieved,
the final belief for each node is bl (el) =

∑
k∈N (l)

mT
kl (el) +

ul (el), T is the number of iterations of message passing. The
resultant optimal e∗l is e∗l = argmin

el

bl (el).

3. EXPERIMENTAL RESULTS

We demonstrate the performance of DEC on synthetic and
real data sets in this section. The default value for the kernel
bandwidth hn in (10) is h∗

n, which is set as the variance of
the pairwise distance between data points

{
∥xi − xj∥i<j

}
,

and the default value for the balancing parameter λ in the ob-
jective function (10) is 1. DEC produces different number of
clusters by varying both λ and hn. We let hn = αh∗

n, where α
is called the bandwidth ratio controlling the kernel bandwidth.
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λ varies between [0.2, 1] and the bandwidth ratio α varies be-
tween [0.2, 1.9] with step 0.2 and 0.05 respectively. We use
fixed parameter setting throughout all the experiments. For
the clustering methods that depend on random initialization
such as K-means, we run them 30 times and report the aver-
age performance.

Data Sets

We conduct experiments on two synthetic data sets and four
real data sets. For both synthetic data sets, 300 points are ran-
domly generated in R2 whose distribution is a mixture of 5
Gaussians with equal weight and different scales. In the first
data set, the means and covariance matrices for the Gaussian
components are randomly generated. The means for the 5
Gaussian components are generated from N ((−6 − 6) , I),
N ((−6 6) , I), N ((6 6) , I), N ((6 − 6) , I) and N ((0 0) , I)
respectively. The covariance matrices for the first four Gaus-
sian components are generated from W (I, 2) and that for
the last Gaussian component is generated from W (2I, 2),
where W (Σ, d) indicates Wishart distribution with covari-
ance matrix Σ and d is the degree of freedom. The second
data set is almost the same as the first one except that the
covariance matrices for the last two Gaussian components are
generated from W (2I, 2). We choose four real data sets from
UCI repository [14], i.e. Iris, Parkinsons, Vertebral Column
(VC), and Breast Tissue (BT). We use the popular adjusted
rand index (ARI) [15] for evaluating the performance of the
clustering methods. ARI has been widely used as a mea-
sure of agreement between the inferred cluster labels and the
ground truth cluster assignments. It ranges from −1 to 1, and
achieves the maximum 1 when the inferred label is identical
to the ground truth.

Clustering Results

We compare DEC to K-means, spectral clustering (SC) [16],
Gaussian Mixture Model (GMM) [17], Affinity Propagation
(AP) [1], Convex Clustering with Exemplar-Based Model
(CEB) [4] for the task of clustering on the synthetic data. We
report the same experimental results for the two synthetic data
sets, Parkinsons, VC and BT data sets as in [18], which is a
preliminary version of this paper. To reveal the effectiveness
of default parameters, we require all the three exemplar-based
clustering methods, i.e. AP, CEB, DEC, run with default pa-
rameters. The clustering results in terms of ARI on the two
synthetic data sets are reported in in Table 1(a). We report
the average ARI (Avg ARI) and the standard deviation (SD)
of ARI for all the clustering methods. T is the number of
times when exemplar-based clustering methods choose the
correct cluster number, AC is the average number of clusters
they produce on each data set. We observe that DEC achieves
the highest average ARI, and the number of times it chooses
the correct cluster number is more than other exemplar-based
clustering methods. DEC outperforms AP and CEB by virtue
of its discriminative capability from the MEUC model and

Table 1. Clustering Results
(a) Clustering on the synthetic data

Data K-means SC GMM AP CEB DEC

1
Avg ARI 0.8625 0.8917 0.9143 0.7548 0.9215 0.9421

SD 0.0445 0.0341 0.0528 0.0992 0.0471 0.0317
T(AC) - - - 0(8.7) 7(5.8) 8(4.5)

2
Avg ARI 0.8472 0.8116 0.8874 0.6996 0.9224 0.9389

SD 0.0598 0.0304 0.0625 0.0882 0.0475 0.0383
T(AC) - - - 0(9.3) 6(6) 8(4.5)

(b) Clustering on the real data
Methods Iris Parkinsons VC BT

AP 0.7297 ± 0.0301 0.0626 ± 0 0.2937 ± 0 0.2691 ± 0
CEB 0.5432 ± 0.0199 - -0.0059 ± 0.0012 0.0796 ± 0
DEC 0.7619 ± 0.0068 0.1595 ± 0.2011 0.3380 ± 0.0292 0.4618 ± 0.0104

modeling the data distribution more accurately by kernel den-
sity estimation. We also observe that CEB always performs
better than GMM since it finds the global minimum of a con-
vex likelihood function of a mixture model. AP tends to split
the data into many small clusters by its default setting, and it
produces the largest average number of clusters. Moreover,
we compare DEC to representative exemplar-based clustering
methods, i.e. AP and CEB, for clustering on real data sets.
All the exemplar-based clustering methods produces different
cluster numbers by varying their parameters. AP controls
the number of clusters by a parameter called preference.
We first estimate the lower bound and upper bound for the
preference using routine functions provided by the authors,
then evenly sample 170 (the number of parameter settings
for DEC) preference values between its upper bound and
lower bound, and then run AP with each sampled preference
value. CEB partitions the data by varying the scale β which
controls the shape of the mixture components. Likewise, we
evenly sample 170 values between [0.1, 3] for β. we record
the average ARI and the standard deviation of ARI for all
the exemplar-based clustering methods when they produce
the correct number of clusters for each data set (shown in Ta-
ble 1(b)). Coupled with the discriminative clustering model
MEUC by minimizing the misclassification error of the unsu-
pervised plug-in classifier, DEC combines the advantages of
both exemplar-based clustering and discriminative clustering
to achieve better performance.

4. CONCLUSION

We propose Discriminative Exemplar Clustering to improve
the discrimination capability of the exemplar-based cluster-
ing scheme, which employs a novel discriminative cluster-
ing model by minimizing the misclassification error of the
unsupervised plug-in classifier. Coupling the discriminative
clustering model MEUC and the exemplar-based clustering
scheme, we build the objective function of DEC and optimize
it in a Pairwise MRF. Experimental results show that DEC
compares favorably to other exemplar-based clustering meth-
ods on synthetic and real data sets.
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