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ABSTRACT

We propose algorithms for Tucker tensor decomposition, which can
avoid computing singular value decomposition or eigenvalue decom-
position of large matrices as in the work-horse higher order orthog-
onal iteration (HOOI) algorithm. The novel algorithms require com-
putational cost of O(I3R), which is cheaper than O(I3R + IR4 + R6)
of HOOI for multilinear rank-(R,R,R) tensors of size I × I × I.

Index Terms— tensor decomposition, Tucker decomposition, or-
thogonality constraint, Cayley transform, Crank-Nicholson-like scheme

1. INTRODUCTION

Tucker tensor decomposition is the most well-known tensor
decomposition together with the CANDECOMP/PARAFAC
decomposition. This tensor decomposition is originally in-
troduced in psychometrics [1, 2], and later has found many
applications in numerous inter-disciplinary areas [3–9]. The
Tucker decomposition is a multilinear extension of principle
component analysis, or MultiLinear Singular Value Decom-
position (MLSVD) [10]. The Tucker decomposition can com-
press data into a tensor of smaller size, which is represented
by the core tensor, while its factor matrices span the sub-
space occupied by fibers of the data. Owing to these proper-
ties, the compressed data can be considered features for clas-
sification, recognition and clustering. For example, Tucker
decomposition generalized the eigenfaces to tensorfaces in
face recognition for different illuminations, poses, and ex-
pressions [5]. Tucker decompositions with various constraints
such as orthogonality, non-negativity, discriminant using cat-
egory information are suggested for classification, clustering
[6]. Tucker decomposition (compression) is often used as a
preprocessing for other tensor decompositions such as CAN-
DECOMP/PARAFAC [11], decomposition into direct com-
ponents (DEDICOM) [12, 13]. Tucker decomposition can be
used for signal filtering [14], image denoising [15, 16].

In general, the Tucker decomposition is simply not
unique. An unconstrained Tucker decomposition can al-
ways be converted to an orthogonal Tucker decomposi-
tion with an equivalent approximation error, which can be
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solved efficiently using the higher order SVD (HOSVD) al-
gorithm or the Higher Order Orthogonal Iteration algorithm
(HOOI) [17]. Hence, in practice, Tucker decomposition is
always with orthogonality constraints. The HOSVD algo-
rithm is a non-iterative algorithm, whose factor matrices are
leading-left singular vectors of mode-n matricizations of the
data tensor, whereas, factor matrices in the HOOI algorithm
are iteratively updated in closed-form given by leading sin-
gular vectors of matricizations of the compressed data by all
but one factor matrices. HOSVD is often used to initialize
HOOI. This makes the HOOI algorithm becomes a “work-
horse” algorithm for Tucker decomposition. In [18, 19],
algorithms exploiting second-order information have also
been proposed for Tucker decomposition. The algorithms re-
quire less number of iterations than HOOI, but they are much
more expensive than HOOI. So far, there is not a comparable
algorithm to HOOI in the sense of simplicity and efficiency.

In the HOOI algorithm, finding factor matrices through
EVD of matrices of size In × In may become a weak point
of this algorithm, when the data dimensions In are large. In
this paper, we propose an algorithm based on the Crank-
Nicholson-like scheme and the curvilinear search approach
in [20],which has low computational cost, while its perfor-
mance is comparable to HOOI.

Throughout the paper, we shall denote tensors by bold cal-
ligraphic letters, e.g., A ∈ RI1×I2×···×IN , matrices by bold cap-
ital letters, e.g., A =[a1, a2, . . . , aR] ∈ RI×R, and vectors by
bold italic letters, e.g., a j. The mode-n matricization of tensor
Y is a matrix Y(n) of size In × (

∏
k�n Ik) [3]. The mode-n mul-

tiplication of a tensor Y ∈ RI1×I2×···×IN by a matrix U ∈ RIn×R

is denoted by Z = Y ×n U ∈ RI1×···×In−1×R×In+1×···×IN which is
in mode-n matricization given by Z(n) = U Y(n).

The Tucker decomposition of a tensor X ∈ RI1×I2×···×IN

can be written as

X ≈
R1∑

r1=1

R2∑
r2=1

· · ·
RN∑

rn=1

gr1r2...rN u(1)
r1
◦ u(2)

r2
◦ · · · ◦ u(N)

rN
, (1)

where G = [gr1r2...rN ] ∈∈ RR1×R2×···×RN and matrices Un =

[u(n)
1 , . . . , u

(n)
Rn

] are of full column rank.

2. THE PROPOSED ALGORITHMS

When the factor matrices in the Tucker decomposition Un are
constrained to be orthogonal matrices, the core tensor is ex-
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pressed in closed-form as

G = Y ×1 UT
1 ×2 UT

2 · · · ×N UT
N . (2)

Therefore, the decomposition can be achieved through mini-
mizing the least squares cost function

D =
1
2
‖Y − G ×1 U1 ×2 U2 · · · ×N UN‖2F

=
1
2

(
‖Y‖2F − ‖G‖2F

)
, (3)

which is equivalent to the problem

minimize
−1
2
‖Y ×1 UT

1 ×2 UT
2 · · · ×N UT

N‖2F (4)

subject to UT
n Un = IRn , n = 1, . . . ,N,

or to the optimization problem when expressing tensors by
mode-n matricization

maximize tr{UT
n Cn Un} (5)

subject to UT
n Un = IRn , n = 1, . . . ,N ,

where Cn = Y(n)

(⊗k�n Uk Uk
T
)

YT
(n) of size In × In, ⊗ rep-

resents the Kronecker product. We can see that Un com-
prise Rn-leading eigencomponents of the matrices Cn, or
Rn-leading left singular vectors of the matrix Y(n)

(⊗k�n Uk

)
.

This motivates the Higher Order Orthogonal Iteration al-
gorithm (HOOI) [17], an alternating algorithm which es-
timates Un while fixing other factor matrices. The HOOI
algorithm is the most widely-used algorithm for the Tucker
decomposition. However, despite its simplicity and effi-
cient implementation, the HOOI algorithm involves SVD or
EVD of large matrices if In are relatively large. This algo-
rithm costs O(I3R + IR4 + R6) [19] for order-3 tensor of size
I1 = I2 = I3 = I and R1 = R2 = R3 = R.

2.1. A Crank-Nicholson-like algorithm

In order to derive the new algorithm, we construct Lagrange
functions of the cost function (4) with the orthogonality con-
straints,

L(U1, . . . ,UN ,Λ1, . . . ,ΛN) =
−1
2
‖Y ×1 UT

1 · · · ×N UT
N‖2F −

1
2

N∑
n=1

tr
(
Λn

(
UT

n Un − IRn

))

where Λn of size Rn × Rn are Lagrange multipliers. The gra-
dient of the Lagrangian with respect to the Un is given by

Gn = −Cn Un − UnΛn . (6)

Since UT
n Un = IRn , by setting Gn to zero, we obtain

Λn = −UT
n Cn Un. (7)

We replaceΛn into the gradient (6) to derive a simple steepest
descent update rules for Un as

U(k)
n = U(k−1)

n − ηG(k−1)
n , (8)

where step size η > 0. In practice, the above update rule
may converge slowly, and the new point may not preserve the

orthogonality constraint. To this end, we apply the Crank-
Nicholson-like scheme [20] to derive update rule for Un.

Since GT
n Un = 0, the gradient in (6) is equivalently ex-

pressed as

Gn = −Cn Un + Un UT
n Cn Un

= (Gn UT
n − Un GT

n ) Un. (9)

After replacing the gradient in (8) by that in (9), and U(k−1)
n by

1
2 (U(k−1)

n +U(k)
n ), a new point at the iteration k U(k)

n is generated
following the Crank-Nicholson-like scheme [20]

U(k)
n = U(k−1)

n − η(G(k−1)
n U(k−1)

n
T − U(k−1)

n G(k−1)
n

T
)

(
U(k−1)

n + U(k)
n

)
2

such that it preserves U(k)
n

T
U(k)

n = U(k−1)
n

T
U(k−1)

n . It can be
shown that U(k)

n can be updated using the following rule

Un ←
(
IIn +

η

2
An

)−1 (
IIn −

η

2
An

)
Un , (10)

where An = Gn UT
n − Un GT

n , and IJ represents an identity
matrix of size J × J. For simplicity, the superscript which
indicates the number of iteration has been suppressed in (10).
Since An is a skew-symmetric matrix, AT

n = −An, the matrix
Q = (I + ηAn)−1 (I − ηAn) is orthogonal, QT Q = I, and (10)
is known as the Cayley transform, which can be derived when
solving the optimization on Stiefel manifolds, see [21].

The update rule (10) can be efficiently implemented to
avoid the matrix inverse

(
IIn +

η
2 An

)−1
for large In. For exam-

ple, [20] and [21] propose a method which inverses matrices
of size 2Rn × 2Rn

Un ← Un − η2 F
(
I2Rn +

η

4
KT F

)−1
KT Un , (11)

where F = [Gn,Un] and K = [Un,−Gn]. We will show that
Un in (10) can be updated faster through inverse of matrices
of size Rn × Rn.

Lemma 1 (Fast update rule). Let Γn = GT
n Gn, the update

rule (10) is equivalent to the following update rule

Un ← −Un + (2 Un − ηGn)
(
IRn +

η2

4
Γn

)−1

. (12)

Proof of Lemma 1 is given in Appendix. Since computa-
tion of Gn in (6) is of the same complexity as the computation
of Cn in (5), the computational cost of (12) at each iteration
is O(I3R) for order-3 multlinear rank-(R,R,R) tensors.

2.2. Choosing step size

The step size η in (12) at iteration-k can be chosen using the
Barzilai-Borwein method [22, 23] defined as

ηk =
sT

k−1 sk−1

sT
k−1 yk−1

, (13)
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Algorithm 1: Crank-Nicholson-like algorithm
Input: Data tensor Y: (I1 × I2 × · · · × IN ), rank R
Output: A multilinear rank-(R1,R2, . . . ,RN ) tensor �G; {U}�
begin

Initialize Un
repeat

for n = 1, 2, . . . ,N do
1 X = Y ×1 UT

1 · · · ×n−1 UT
n−1 ×n+1 UT

n+1 · · · ×N UT
N

2 Cn = X(n) XT
(n)

3 repeat
4 Gn = −Cn Un + Un UT

n Cn Un

5 Un ← −Un + (2 Un − ηGn)
(
I + η

2

4 GT
n Gn

)−1

until a stopping criterion is met

until a stopping criterion is met
G = X ×N UT

N

where sk−1 = vec
(
U(k)

n − U(k−1)
n

)
= −ηk−1 vec

(
G(k−1)

n

)
, yk−1 =

vec
(
G(k)

n −G(k−1)
n

)
. The factor matrices Un are iteratively up-

dated in an inner loop with a small number of iterations.
An alternative method to select step size η is that we re-

place Un in (5) by (Un Wn − ηGnΩn) given in (12) where

Ωn = (I +
η2

4
Γn)−1, Wn = 2Ωn − I, and construct the cost

function to find η

Dn(η) = tr{(WT
n UT

n − ηΩn GT
n ) Cn (Un Wn − ηGnΩn)}

= tr{WT
n T1 Wn − 2ηWT

n (UT
n CnGn)Ωn + η

2ΩnT2Ωn}
where T1 = UT CnUn, T2 = GT

n CnGn. We have W2
n = I +

4Ωn(Ωn − I) = I − η2Ω2
n Γn, and UT

n CnGn = −Γn because
(GT

n + UT
n Cn) Gn = UT

n CnUn UT
n Gn = 0.

Let σr , vr be eigenvalues and eigenvectors of Γn =∑Rn
r=1 σr vr vT

r . Hence, Ωn =
∑Rn

r=1
4

4+η2 σr
vrvT

r , and Wn =∑Rn
r=1

4−η2 σr

4+η2 σr
vrvT

r . The cost function Dn(η) is then rewritten as

Dn(η) = tr{T1 + η
2Ω2

n(T2 − ΓnT1) + 2ηWnΓnΩn}

= tr{T1} +
Rn∑
r=1

16η2dr

(4 + η2 σr)2 +

Rn∑
r=1

8ησr(4 − η2σr)
(4 + η2 σr)2

where dr = vT
r (T2−σrT1) vr. This is equivalent to the problem

with η ≥ 0

maximize f (η) =
Rn∑

r=1

−σ2
r η

3 + 2 dr η
2 + 4σr η

(4 + η2 σr)2 . (14)

Assuming that 0 ≤ η � 1, the criterion in (14) can be approx-
imated as

f (η) ≈ −3
16

a3 η
3 +

1
8

a2 η
2 +

1
4

a1 η (15)

where a3 =
∑

r σ
2
r , a2 =

∑
r dr, and a1 =

∑
r σr. Computa-

tion of the optimum η thus can be done in closed form, but it

5 10 15 20 25 30
0

5

10

15

20

Rank

R
un

ni
ng

 T
im

e 
(s

)

 

 

HOOI
BB
CrNc

Fig. 1. Comparison of running times of algorithms when their
approximation errors were 99.9% of of the final relative errors
achieved by the HOOI algorithm.

involves eigendecomposition of Γn. In practice, the improve-
ment of convergence compared to the Barzilai-Borwein step
size method is marginal. Although the update (12) preserves
orthogonality of Un, in some cases, Un may not be perfectly
orthogonal due to problems of numerical precision and trun-
cation error through number of iterations, Un should be re-
placed by its orthogonal basis vectors Un = AΣBT , Un ←
ABT .

3. SIMULATIONS

In this section, the proposed algorithms are verified through
decomposition of order-3 tensors of size I × I × I randomly
generated from the normal distribution with zero mean and
unique standard deviation. Tensors were approximated by
multilinear rank-(R,R,R) tensors with R = 5, 10, . . . , 30. In
addition to comparing the Crank-Nicholson-like (CrNc) al-
gorithm with the HOOI algorithm, the simple steepest de-
scent algorithm in (8) with step size chosen using the Barzilai-
Borwein method (BB) was also considered in the simulations.
The step size in CrNc was also chosen using the BB method.
The relative approximation errors were used to evaluate per-
formance of algorithms

ε =
‖Y − G × {U}‖F

‖Y‖F =

√
‖Y‖2F − ‖G‖2F
‖Y‖F . (16)

The HOOI algorithm and the proposed algorithms were ini-
tialized by the same values using the HOSVD algorithm or
orthogonal random matrices. All algorithms were set to run
in 200 iterations. At the end of the iterative process, differ-
ences between the consecutive relative approximation errors
were lower than 10−6, indicating that algorithms converged to
sufficient precision for comparison.

As seen in Fig. 2(a), all algorithms achieved almost the
same relative approximation errors for different ranks. The
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(a) Approximation error.
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(b) Approximation errors when R = 5.
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(c) Approximation errors when R = 30.

Fig. 2. Performance comparison of algorithms in decomposition of random tensors of size 100 × 100 × 100.
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Fig. 3. Performance comparison of HOOI and CrNc in de-
composition of tensors of size 200 × 200 × 200.

results were averaged over 100 runs. In Figs. 2(b) and 2(c),
we show the approximation errors as functions of the num-
ber of iterations. Approximation errors of the BB algorithm
were far from those of the HOOI algorithm, but this algo-
rithm approached the HOOI after 10-20 iterations. The CrNc
algorithm was much better than the BB algorithm, and its ac-
curacy was very close to that of the HOOI algorithm. Fig. 1
compares average running time of algorithms, when their ap-
proximation errors were approximately 99.9% of the final rel-
ative error of the HOOI algorithm achieved in 200 iterations.
The CrNc algorithm were approximately 3-10 seconds faster
than the HOOI algorithm.

In a second example, we decomposed tensors of size 200×
200×200 composed from randomly generated factor matrices
of size I × R, and random core tensors of size R × R × R. The
tensors were corrupted by heavy additive Gaussian noise at
signal-noise ratio SNR = -50 dB. Algorithms were run in 100
iterations, but could stop earlier when the consecutive relative
error was lower than 10−7. Fig. 3 shows results averaged over
200 independent runs, which indicate that CrNc and HOOI
achieved comparable relative errors, but CrNc was faster than
HOOI.

4. CONCLUSIONS

We have shown that the CrNc algorithm can quickly at-
tain the performance of the HOOI algorithm after a few
iterations, while the simple steepest descent algorithm can
require higher number of iterations. Since inverses of Rn ×Rn

matrices are relatively cheap, the CrNc algorithm is more
promising. The CrNc algorithm can be extended to decom-
pose tensor with missing entries. The proposed algorithm is
implemented in the Matlab package TENSORBOX which is
available online at: http://www.bsp.brain.riken.jp/
˜phan/tensorbox.php.

Appendix: Proof of Lemma 1

Let Ωn =

(
IRn +

η2

4
Γn

)−1

. Using the fact that An Un = Gn

and An Gn = −UnΓn, it can be shown that

η

2
An = UnUT

n +
η

2
GnUT

n − Un

(
I +
η2

4
Γn

)
Ωn (Un +

η

2
Gn)T

= UnUT
n +
η

2
AnUnUT

n −
η2

4
UnΓnΩn(Un +

η

2
Gn)T

− (Un − η2 Gn +
η

2
Gn)Ωn (Un +

η

2
Gn)T

=

(
I +
η

2
An

)
UnUT

n +
η2

4
An GnΩn(Un +

η

2
Gn)T

− (Un − η2 Gn +
η

2
An Un)Ωn (Un +

η

2
Gn)T

=

(
I +
η

2
An

) (
UnUT

n − (Un − η2 Gn)Ωn (Un +
η

2
Gn)T

)

Since GT
n Un = 0 and UT

n Un = I, from (10) we have

Un ←
(
I − η

(
I +
η

2
An

)−1
An

)
Un

=

(
I − 2

(
UnUT

n − (Un − η2 Gn)Ωn (Un +
η

2
Gn)T

))
Un

= −Un + (2 Un − ηGn)Ωn .
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