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ABSTRACT

Nonnegative matrix factorization (NMF) has been shown
to be identifiable under the separability assumption, under
which all the columns(or rows) of the input data matrix
belong to the convex cone generated by only a few of these
columns(or rows) [1]. In real applications, however, such sep-
arability assumption is hard to satisfy. Following [4] and [5],
in this paper, we look at the Linear Programming (LP) based
reformulation to locate the extreme rays of the convex cone
but in a noisy setting. Furthermore, in order to deal with the
large scale data, we employ First-Order Methods (FOM) to
mitigate the computational complexity of LP, which primar-
ily results from a large number of constraints. We show the
performance of the algorithm on real and synthetic data sets.

Index Terms— Robustness, Nonnegative matrix factor-
ization (NMF), Linear Programming (LP), First-Order Meth-
ods (FOMs)

1. INTRODUCTION

Matrix factorization has numerous applications to the real
world problems. Factorizing them into lower-rank forms is
able to reveal the inherent structure and features, which helps
in the meaningful interpretation of the data. In a wide range of
natural signals, negative values are usually physically mean-
ingless. Therefore, in order to deal with this non-negative
constraint, NMF was introduced [1].

It has been proven that NMF is an NP-hard problem [3].
However under a separability assumption [1], [2] the unique-
ness and tractability of the problem can be guaranteed. The
assumption states that the extreme rays generating the cone
(in the non-negative orthant) are contained in the data. Thus,
for NMF, one only needs to identify these extreme rays.

It was pointed out in [4] that under the additional assump-
tion that there are no duplicates present in the data and no ex-
treme ray is in the convex combination of the other extreme
rays, the LP based formulation of [5] can uniquely identify
both the number and locations of the extreme rays from the
data for the noiseless case. However, as pointed out in [4],

the LP based formulation in [5] still suffers from high com-
putational complexity for very large scale problem.

The literature of NMF provides several methods to deal
with the noisy data. Bittorf et.al. [5] handled the noise part by
controlling and error region in their LP formulation. Kumar
et al. [6], presented a fast algorithm based on its polyhedral
structure. Both approaches require the number of extreme
rays as a necessary input. Gillis and Luce [7] reformulated
the algorithm to detect the extreme rays automatically. Nev-
ertheless, the shortcoming still exists that the number of con-
straints is enormous in face of the large-scale data.

In order to handle the large scale data, in this paper we
look at First-Order Methods (FOMs) [8] to mitigate the com-
putational complexity. Compared with the polynomial time
interior-point methods (IPMs), which is capable of solving
convex programs to high accuracy at a low iteration count,
FOMs focus on the cheap computation of each iteration step,
which is the reason for the good fit for large-scale optimiza-
tion problems. Based on the literature on FOMs [8], [10],
the paper provides an algorithm to solve the robust NMF of
large-scale noisy data. From the results, the proposed algo-
rithm exhibits the capability to deal with the practical data.

The organization of the paper is as follows. Section 2
provides a brief review of NMF from the geometric perspec-
tive. Section 3 explains the proposed algorithm with the re-
formulated linear programming constraints. The experiments
results are presented in Section 4 and the paper concludes in
Section 5.

2. GEOMETRY OF THE NMF PROBLEM

For the non-noisy case, a data matrix X = [x1,x2, ...,xn] ∈
Rm×n

+ is given. NMF aims to find two nonnegative matrices
F ∈ Rm×r

+ and W ∈ Rr×n
+ such that X = FW. This factor-

ization indicates that there are vectors {fi}ri=1 in Rm×1
+ so that

all the sample vectors of X have a representation as convex
combinations of the {fi}ri=1. This algebraic characterization
has a geometric interpretation in [1] and [4]. Therefore, the
separability assumption can be defined as follows.

Definition 1. separability assumption : The dataset
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consisting of all columns of X, reside in or on the surface
of a cone generated by a subset of r columns of X being
simplicial and there are no duplicate columns in X.

In algebraic terms, X = FW = XIW for some subset
I ⊆ {1, 2, ..., r} of columns of X and where XI denotes the
matrix built with columns of X indexed by I . This means
that the r vectors of {fi} are hidden among the columns of
X (I is unknown) [9]. Equivalently, it implies that the corre-
sponding subset of r rows of W constitutes the r × n weight
matrix. Those r columns of X are referred to the extreme
rays of the cone. As proved in [9], any non-negative ma-
trix meeting the separability assumption can be factorized
uniquely. More details can be found in [4]. If we denote
X̂ = [x̂1, x̂2, ..., x̂un] ∈ Rm×n

+ as the noisy data, the mission
of the NMF is through the following minimization problem,

min
F̂,Ŵ≥0

||X̂− F̂Ŵ||22 (1)

and we aim to find a simplical cone as defined in [4] that to
incorporate all the data points. However, the separability as-
sumption right now may not be satisfied anymore. The ge-
ometric structure of NMF for noisy data is described as in
Figure. 1.

Buffer Area 

     Optimized 
Simplicial Cone 

          Noise  
Corrupted Cone 

Fig. 1. Geometry of the NMF for noisy data. A simplicial
cone can be optimized to incorporate the data points as many
as possible.

Similarly as proposed in [10], in the scenario where the
data vectors {xn} are corrupted by additive noise, an approx-
imated simplicial cone can be optimized to mitigate the noise
effects, by keeping the extreme rays estimates away from the
boundary of the data-constructed convex hull by some dis-
tance. Therefore, it attempts to bring the approximated sim-
plcial cone closer to the ground truth. As shown in Figure.1,
the circles located at the corners of the simplicial cone repre-
sent the maximum buffer regions.

3. LP REFORMULATION

As explained in [4] and [5], a localizing matrix C of NMF
X = FW is defined as:

X = XΠT

[
Ir M
0 0

]
Π := XC (2)

where Π is a permutation matrix such that

FΠ =
[
Ir M

]
(3)

The Proposition 1 in [4] tells that suppose X admits a sep-
arable factorization FW, compute the LP problem to find C.
Let I = {i : Cii = 1}, then F = XI . Now in the presence
of the noise interference, the formulation of the LP problem
from [5] can be restated as,

min
C∈Rn×n

+ ,Q∈Rm×n
pTdiag(C)

s.t. XC = X + Q, ||Q||1 ≤ ε.
(4)

where Q is the buffer area as shown in Figure.1 and ε is the
size of the buffer area. || · ||1 represents the `1 norm. We use
the `1 norm since there are a small number of extreme rays
compared to the total number of columns.(In [5], the authors
used `∞,1 norm on Q). Alternatively in this paper, we con-
sider an unconstrained version as

min
C∈Rn×n

+ ,Q∈Rm×n
f(C,Q) (5)

where f(C,Q) is defined as

f(C,Q) = pTdiag(C) + β||XC−X−Q||22 + λ||Q||1
(6)

where both β and λ are two optimization parameters. In con-
trast to [5] where the main computational cost was the large
number of constraints, in the unconstrained case in (6), the
main computational bottleneck is to deal with least squares
projection at each step which is not cheap. In order to alle-
viate the computational cost of least square projection, in the
following section we will outline a FOM based algorithm.

4. FOMS-BASED ROBUST NMF ALGORITHMS

FOMs are known to be computationally cheap [8], [11],
because of minimizing convex objectives over “simple”
large-scale feasible sets. In this section, two algorithms are
provided based on [10]. For any C̃ ∈ dom f , consider the ap-
proximation of f on C with its linear approximation function
at C̃ (assume Q is fixed so f is merely a function of C):

`f (C; C̃) := f(C̃)+ < ∇f(C̃),C− C̃ > (7)

Choose a strictly convex function h : ε→ (−∞,∞] that
is differentiable on an open set containing dom f , and con-
sider the corresponding distance/proximity function

D(C; C̃) := h(C)− h(C̃)− < ∇h(C̃),C− C̃ > (8)
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In this paper, we choose h(C) = C log(C)−C to in-
corporate the constraint C ≥ 0. The classical gradient-
projection method naturally generalizes to solve (8), with
the constant step size 1/Lip and D used in the nearest-point
projection, where Lip is the Lipschitz constant for f(C,Q),
with respect to the `1 norm. The 1-memory O(

√
(L/ε))-

based method is provided in Algorithm 1.

Algorithm 1 FOMs-based NMF in 1-memory O(
√

(L/ε))

Input: A column normalized matrix X ∈ Rm×n
+ with noise

interference, stopping threshold δ.
Output: A matrix F ∈ Rm×r

+ and W ∈ Rr×n
+ , and X ≈

FW.
1: Randomly initialize C0,Q0, {T0,Z0} ∈ dom f , ran-

domly generate p ∈ Rm×1
+ . Choose θ0 ∈ [0, 1], k ← 0.

2: Update Ck while keep Qk fixed:
2.1: Update Tk:

Tk = (1− θk)Ck + θkZk. (9)

2.2: Update Zk+1:
`f (C;Tk) := f(Ck,Qk)+ < ∇f(Tk,Qk),Ck −Tk >

= Tr{diag(p)Tk}+ β||XTk −X−Qk||22 + λ||Qk||1

+
(
diag(p)T + 2βXT(XTk −X−Qk

)T
(C−Tk)

(10)
D(C;Zk) := h(C)− h(Zk)− < ∇h(Zk),C− Zk >

= C log(C)− Zk log(Zk)− (log(Zk) + I)T(C− Zk)
(11)

Zk+1 = argmin
C
{`f (C;Tk) + θkLipD(C;Zk)}

= exp

(
−
(
diag(p)T + 2βXT(XTk −X−Qk

)
Lipθk

)
Zk

(12)
2.3: Update Ck+1 and θk:

Ck+1 = (1− θk)Ck + θkZk+1, θk = 2/(k + 2) (13)

3: Update Qk while keep Ck+1 fixed:

Qk+1 = ((XCk+1 −X)− λ)+ − (−(XCk+1 −X)− λ)+
(14)

4: Stop the iterations if ||Ck+1 −Ck||fro ≤ δ.
5: Let I = {i : Cii = 1} and set F = XI as well as obtain

W = C(I, :).

5. EXPERIMENTAL RESULTS

All of the experiments were run on an identical configuration:
a dual Xeon W3505 (2.53GHz) machine with 16GB RAM.
FOMs algorithm is examined in MATLAB 2013a.

5.1. Synthetic Data

The synthetic data set is created as follows: r independent
extreme rays are firstly created randomly in R+

m×1, with the

Table 1. Experiments on different synthetic dataset

Data Set 50dB 20dB 10dB

25× 100(25) 25/25 25/25 20/25

75× 100(45) 45/45 45/45 38/45

500× 375(100) 100/100 93/100 89/100

425× 1200(625) 625/625 615/625 599/625

value between [0, 1]. The remaining columns are then gen-
erated to be the random non-negative combinations of the r′

extreme rays, where r′ ∈ [2, r] is randomly selected for each
of the n − r columns. The Additive White Gaussian Noise
(AWGN) is imposed to the generated data based on various
Signal-to-Noise Ratio (SNR) levels. The column normaliza-
tion is then carried out sequentially. Since the algorithm is
free from the order of the columns, the r extreme rays are al-
located at the beginning of each data set. When Algorithm 1
is applied to the generated data under different SNR levels,
the experimental results are presented in Table.1. The num-
ber in the brace following data size represents the number of
extreme rays r. The stopping criteria δ for all the experiments
is set to 10−5. The soft-threshold λ in (14) is 20.

Fig. 2. C for the input X ∈ R25×100 under 20dB

5.2. Hyperspectral Imaging DataSet

In this section, we apply the proposed algorithm on a hyper-
spectral imaging dataset, Urban HSI [12]. It is from HYper-
spectral Digital Imagery Collection Experiment (HYDICE)
which contains 162 clean spectral bands, and the data cube
has dimension 307 × 307 × 162. The Urban data set is a
rather simple and well understood data set: it is mainly com-
posed of 6 types of materials (road, dirt, trees, roof, grass and
metal) as in shown in Fig.3 and the spectral signatures of the
six endmembers after normalization is plotted in Fig.4 [13].

Based on the large amount of pixels (307×307 = 94249)
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Fig. 3. Urban HSI set taken from an aircraft

Fig. 4. The spectral signatures of the six endmembers after
normalization [13]

compared to the 6 endmembers, we need to perform a series
of preprocessing steps in order to make sure the proposed al-
gorithm is robust enough to find all the endmembers under
low false positive rate. First of all, we vectorize each spec-
tral band frame to be a 94249 × 1 vector, so that we have a
162× 94249 matrix then do the column normalization. Next,
for each column, which represents a pixel along 162 spec-
tral bands, if the Frobenius Norm distance between any two
columns is less than a threshold γ, we remove one of the
columns. Therefore, we will have a much smaller size ma-
trix but still contain all the endmembers. In our experiments,
we choose γ = 0.1 to get a 162× 122 matrix X. We plot the
spectral signatures of X in Fig. 5.

After applying Algorithm 1, the C matrix we get is
shown in Fig. 6. Compared with the C matrix in Fig. 2, the
large value entries representing the location of the signature
endmembers do not reside on the diagonal of C any more.
It is because that for each endmember, there are numerous
pixels in X still close to it (e.g. Frobenius Norm) in high

Fig. 5. Spectral signatures of X

Fig. 6. The localization matrix C obtained from Algorithm 1

dimension, as shown in Fig. 5. Therefore, these pixels can be
regarded as the approximate duplicates of the endmembers so
that the separability assumption is not satisfied. However,
we observe that even the large value entries are off diagonal,
they are still representing the potential desired endemebers.
For example in Fig. 6, C(7, 8) = 0.9564 tells that X(:, 7) and
X(:, 8) are both the duplicates of Dirt endmember. Based on
this observation, a post-processing could be performed on C
is to explore the large value entries (we pick C(x, y) >= 0.5)
and record the unique pixels indices as the endmembers’ can-
didates. By doing this we identify the number and location of
signature endmember eventually. Applying this postprocess-
ing to the C in Fig. 6, we get the 8 endmembers and we pick
6 unique spectral signatures to plot in Fig. 7.

6. CONCLUSION

In this paper we reformulate the LP to deal with approxi-
mate NMF, which can be regarded as the separable NMF with
noise interference. In order to target on the large-scale prob-
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Fig. 7. Spectral signatures of The identified endmembers
from X: X(:, 6),X(:, 21),X(:, 27),X(:, 44),X(:, 64),X(:
, 127)

lem, we employ FOMs in the optimization process to mitigate
the computational complexity. The proposed algorithms have
been validated on synthetic data with different SNR levels.
For the application on the real hyperspectral imaging, due to
the duplicates of pure pixels, the Seperability Assumption is
not satisfied. We perform a series of pre- and post-processing
to search for the potential endmembers from the off diagonal
entries. Therefore, true negative or false positive cases may
happen due to the choice of thresholds. This would be a main
concentration for the future work. Another aspect of future
work involves the computation of the Lipschitz constant for
large scale data, which can be computationally expensive.

7. FUTURE WORK

In [4], we used the Seperability Assumption [1], [2] to show
that for exact NMF without duplicates, the Linear Program-
ming(LP) can give the extreme rays. Ideally, for exact NMF,
the localization matrix C would have 1 on the diagonal to in-
dicate the location of extreme rays. However, as shown in
Fig.5, since the duplicates of signature endmembers (extreme
rays) exist, the off diagonal entries become large and the di-
agonal entries are very small. To address this issue, one can
consider to add another set of constraints that require the di-
agonal values of C larger than or equal to the off diagonal
entries: Cii ≥ Cij ,Cii ≥ Cji. Therefore, the optimization
problem in (4) becomes

min
C∈Rn×n

+ ,Q∈Rm×n
pTdiag(C)

s.t. XC = X + Q, ||Q||1 ≤ ε
Cii ≥ Cij ,Cii ≥ Cji.

(15)

However, the challenge involved with (15) is that when it
comes to large-scale input data X, the number of constraints
Cii ≥ Cij ,Cii ≥ Cji is very large. One of the proposal is

in [5], where the incremental primal dual gradient update is
proposed. Another proposal is shown in [14], in which the
random projection scenario is employed to randomly select a
small set of the constraints in solving the optimization prob-
lem in (15).
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