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ABSTRACT

The auditory cortex in the brain does effortlessly a better job of ex-
tracting information from the acoustic world than our current gener-
ation of signal processing algorithms. Abstracting the principles of
the auditory cortex, the proposed architecture is based on Kalman fil-
ters with hierarchically coupled state models that stabilize the input
dynamics and provide a representation space. This approach extracts
information from the input and self-organizes it in the higher layers
leading to an algorithm capable of clustering time series in an unsu-
pervised manner. An important characteristic of the methodology is
that it is adaptive and self-organizing, i.e. previous exposure to the
acoustic input is the only requirement for learning and recognition,
so there is no need of selecting the number of clusters.

Index Terms— Music information retrieval, kalman filters, dy-
namical systems, hierarchical systems, clustering, time series

1. INTRODUCTION

Clustering of time series is a challenging problem compared to its
counterpart on static data sets. Therefore considerable amount of
work have been conducted on this area. In [1] Liao surveys the cur-
rent state of the art. Most of the current work either modifies the
distance measures used in clustering of static data to work on time
series or extracts features from time series and applies methods of
static data clustering on them. Our approach falls under the sub-
group that uses modelling techniques to cluster time series as will
be explained below. Our approach is substantially different from the
majority of the methods dealing with clustering of time series be-
cause it takes advantage of the temporal information buried in the
temporal structure of time series.

The signal processing and machine learning communities do not
favor state space models and dynamical systems. This could be a
poor decision when working on sensory stimulus. The reason is
plain and simple, the stimuli is rich in terms of context at a given
time (spatial information); however considerably large amount of in-
formation lies in the temporal behavior of the sensory input [2]. This
is even more important when working with auditory stimuli, as we
are working with a one-dimensional signal, most of the information
can be gathered by analyzing the temporal structure. Therefore the
bag of audio features representation, which is a common approach
in music information retrieval, is fundamentally limited by ignoring
the time dependency between feature vectors [3].

We know that the auditory pathway in the human cortex is a
fairly complicated structure. Lots of attempts have been made to
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model the auditory perception [4]. It will be fair to state that most of
the work concentrated on the modeling of cochlea and the auditory
nerves linking to the basilar membrane in the cochlea. An important
question should be asked by the researchers in this field: What are
good features for sensory processing? The answer is not clear and
we almost exclusively keep using the sensory space to find them.
This may not be the best approach due to the complexity and vari-
ability of the sensed signals (changes in timbre, tone, noise, context),
while we need invariants. On the other hand, biological organisms
have solved this problem long ago by developing an active percep-
tion mechanism. This can be summarized by the phrase: We hear/see
what we want to hear/see; i.e. our brain disambiguates the sensory
signals according to our expectations.

The biological inspirations to build our model are limited and
are restricted to guidelines The model should have a hierarchical
structure to represent the layered structure of the auditory cortex. It
should have the ability to be (directly or indirectly) driven top-down
by causes to mimic active perception. Therefore we will concentrate
on Hierarchical Linear Dynamica Systems (HLDS).

• We propose a new HLDS model that consists of one observa-
tion layer and multiple hidden state layers. Each hidden state
layer acts as the driving input/cause to the layer below it, with
only the lowest layer relating to the observations via a linear
model. We enforce a local centriptic behavior on the highest
hidden state layer which creates a clamping effect that stabi-
lizes the trajectories of the hidden states, thus creating clus-
ters (resembling the Hopfield networks) in the state space of
highest hidden layer.

• The cluster centers will form invariant representations for mu-
sical data. We demonstrate that the model creates clusters
for each musical note played by an instrument and is not
affected by dynamics in amplitude (such as crescendo and
decrescendo) and changes in rhythm.

2. HIERARCHICAL LINEAR DYNAMICAL SYSTEM

It is a common belief that the cortex is stereotyped in hierarchical
layers and internal organization [5]. This is the main motivation for
choosing a Hierarchical Linear Dynamical System.

The idea of a nested HLDS is to design a model that would con-
sist of one measurement equation and multiple state transition equa-
tions. The system is nested in the sense that each state transition
equation creates the causes/states that would drive the lower layer.
This introduces a top-down flow of information. In the nested HLDS
we drive the system bottom-up by the observations, and top-down by
the states. The governing equations of the nested HLDS are:
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zt = zt−1 + pt

ut = Gut−1 +Dzt−1 + rt

xt = Fxt−1 +But−1 + wt

yt = Hxt + vt (1)

where yt ∈ Rm is the observation vector. xt ∈ Rn is the first
layer hidden states, ut ∈ Rk is the second layer hidden states, and
zt ∈ Rs is the third layer hidden states where n > k > s so that the
dimensionality decreases in each layer as we go up in the hierarchy.
The motivation is to restrict the states in to smaller representation
spaces to be used in clustering. In other words, we want the model’s
representation to expand as we go down the hierarchy. The model
is shown to work with a wide range of model sizes in Section 3.
In these equations, pt, rt, wt, vt are zero mean Gaussian uncertain-
ties. The covariance matrices of these uncertanties are defined as
αmIm, αnIn, αkIk, αsIs respectively where Im is an identity ma-
trix of dimension m×m.

The reader should note that we impose a fixed point behavior
(i.e. identity state transition) in the highest layer of the hierarchy.
This combined with the locally stationary behavior of music signals
imposes a stable behavior throughout the hierarchy as each layer is
driven by the one above it. It is intuitive to think that even if slightly
larger changes occur in the observations, the changes in the higher
layers should be much slower. This should result in creating clusters
in the state space that zt ∈ Rs exists.

2.1. State Estimation in Joint Space

We can re-write the nested dynamics defined in (1) as follows:

X̃t = F̃ X̃t−1 + W̃t (2)

yt = H̃X̃t + vt (3)

where X̃t =

 zt
ut

xt

 , F̃ =

 I 0 0
D G 0
0 B F

 ,

H̃ =
[
0 0 H

]
, W̃t =

pt
rt
wt


The equations (2) and (3) tells us that there is a joint state-space

where we can do the estimation of all the hidden states in all the lay-
ers simultaneously. This enables the use of the standard estimation
equations of the Kalman Filter [6] for this joint state space model.

2.2. Parameter Learning

We learn the parameters simultaneously while inferring the states of
the HLDS. This is known as sequential estimation ( [7], [8]), where
we consider two dual systems with the same observation. The idea is
as simple as switching the roles of the parameters and states, where
we vectorize the parameters in

[
F̃,H

]
and treat them as states. We

consider identity state transition for parameter dynamics.
This dual system usually suffers from very high dimensionality.

Thus a common practice is to neglect the second order statistics and
reduce the computational cost in exchange for sub-optimal behavior.
We explain a parallelization method in Section 2.3, which enables us
to avoid the high dimensionality and propagate second order statis-
tics as well; without any loss of optimality.

We know that the auditory processing starts with the air pressure
being transmitted to the ear drum, and then the motion is translated

into the liquid filling the cochlea. Literature is full of papers showing
gammatone filters as reliable models for cochlear filters [9], [10].
Therefore gammatone filters are used in the first layer. The nth order
Gammatone filters are defined using the following formula:

g(t) = atn−1e−2πbtcos(2πft+ ϕ) (4)

where n is the filter order, t is time, a is amplitude, b is the filter
bandwith. ϕ is the phase shift, and f is the center frequency. Equiv-
alent Rectangular Bandwith (ERB) is calculated using the following
formula [11], [12]:

b = 0.108f + 24.7; (5)

For these reasons, we decide to use gammatone filters in the
measurement matrix (H). We create 4th order gammatone filters in
the range from 10Hz to fs/2 (where fs is the sampling frequency
of the recordings we use). We place center frequencies half an ERB
apart, to get a denser coverage in the frequency domain.

2.3. Parallelization of Parameter Learning

One of the bottlenecks of this algorithm is the parameter learning.
The dual system for the parameters requires very high dimensional
systems. However when looked at the propagated error covariance
matrix, one will notice that there is no cross covariance between the
rows of each parameter matrix. The reason for having no cross co-
variance is trivial: when we consider the dual system for parameter
estimation each entry of the observation vector is generated by the
inner product of the whole state vector and the corresponding row
of the matrix. Thus the remaining rows do not have any effect on
the particular entry of the observation vector, so the parallelization
can be done with no loss and without any approximation. In addition
the state transition matrix for the dual system is an identity matrix.
All these properties result in having no cross covariance between the
rows of the matrices while doing parameter estimation.

Fn×n =

 f1
f2
...
fn

 Bn×k =

 b1

b2

...
bn



(xt)n×1 =


x1
t

x2
t

...
xn
t

 (ut)k×1 =


u1
t

u2
t

...
uk
t


where fi,hi,bi is the ith row of the corresponding matrix, yi

t is
the ith element in the observation vector (similarly for xi

t).
To learn the values in F and B consider the following system:

θt = θt−1 + wθ
t

xi
t =

[
xt−1

ut−1

]T

θt + vθt
where θt =

[
fTi
bT
i

]

The high dimensionality of the parameter space was keeping us
from propagating the error covariance of parameter estimation. Now
with these parallel but much smaller systems the propagation can be
done easily. This re-organization saves us a lot of memory space and
computation (e.g. inverses of the much smaller matrices). The same
initialization explained above is used for the dual systems estimating
the parameters.

A common problem in applying the sequential estimation is the
degenerate solution as t → ∞,ŵt → ∞ and xt → 0. To avoid
this solution we force each column of the w = [F,H,D,B,G]
matrices to have unit norm. Therefore after each update, the values
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Table 1. Pitch estimation accuracy of the algorithm in presence of different levels of noise. Dimensions of the model are s=3, k=10, n=60.
35 dB SNR 21 dB SNR 15 dB SNR 7 dB SNR -5 dB SNR

Pitch estimation Accuracy using the Convergence Criterion 98.49% 97.73% 91.68% 39.04% 6.22%

Pitch estimation Accuracy using all Time Instances 93.54% 92.90% 87.33% 37.50% 6.15%

of each column are normalized such that the column has unit norm.
Equation (6) shows the constraint we enforce.

∥Ft(., j)∥ = 1 ∀j (6)

3. EXPERIMENTAL RESULTS

The model is capable of working both on time domain observations
and on frequency domain observations. In this paper, we will work
in the frequency domain. Therefore our observation sequences will
be single-sided magnitude spectrum of the audio signals; we will
not work with the phase of the spectrum. The audio signal will be
windowed using a L-point symmetric Hanning window. The length
of the window will be selected such that each window will contain
about 80-100ms of data. The windows will have 50% overlap. Each
window of data will be normalized to a fixed maximum amplitude
before the FFT is computed.

In this experiment we use the audio samples from The University
of Iowa Musical Instrument Samples [13]. All the instrument record-
ings that are used in this work are recorded in an anechoic chamber.
A Neumann KM 84 Cardioid microphone is used at a distance of 5
feet. The mono recordings are sustained notes of around 2 seconds
sampled at 44.1 kHz with 16-bit resolution. In our work the record-
ings have been downsampled to 11025 HZ mono so that the window
size for the FFT would be reasonable. We used concatenated notes
in the range E3-D6 for the non-vibrato B-sharp Trumpet to train and
test the HLDS.

We use a 1024 point FFT to create the observation vectors from
each window of data. As we use the single sided amplitude spec-
trum, the length of our observation vector is 512 (m=512). We
present each observation vector multiple times to speed up conver-
gence to the clusters. We have n=60 states in the first layer (the
number of filters needed to cover the frequency range placed half an
ERB apart), k=10 (chosen heuristically) states in the second layer
and s=3 (for visaualization purposes) state in the third layer. We use
0.01 · I(n+k+s)×(n+k+s) as the covariance matrix of the joint state
transition equation (2) uncertainty; and 0.5 ·Im×m as the covariance
matrix of the joint measurement equation (3) uncertainty.

Once the training is completed the parameters are fixed and the
system is tested with trumpet notes. Figure 1 shows the point clus-
ters ‘on action’. We picked three random notes from our dataset,
and played them consecutively creating every possible transition be-
tween notes. We see that there is a transition phase before the states
converge around the cluster. The system usually reaches the neigh-
borhood of the cluster within a few (3-6) iterations. We can clearly
see that whatever the initial states are, they converge to the particu-
lar clusters when a certain note is played. The transients are shown
to give a better understanding of the role of ‘dynamics’ in this task.
We can see that there are certain routes/angles that the attractors are
approached by the states.

3.1. Supervised Monophonic Pitch Estimation
For pitch estimation using the clusters in the highest layer, we need
to label cluster centers for each note. Therefore to determine the
cluster centers we present the notes one-by-one to the system with

Fig. 1. The response of the 3rd layer hidden states to a subset of
the trumpet notes. The transients are shown. All possible transitions
between the three notes are shown.

its parameters fixed. As the transition phase between the notes is
considerably short, we do not bother eliminating the transition phase
while determining the cluster centers. We find the mean value for
the highest layer states for all time instances, and assign this value
as the cluster center.

To assess the classification accuracy we do Monte Carlo runs
through all 35 notes. In each run the notes are presented in a differ-
ent order. At each time instant the states are compared to the cluster
centers for each note. The closest center is assigned as the label.
When a new note is presented we create a window or ‘memory’ of
instantaneous labels. We then check if the same decision was given
by the system for all time instances in the memory. When the unani-
mous decision is given for the window, convergence is declared. The
memory size should be decided with care as too long of a memory
would prevent us from recognizing notes that are played for a short
duration. On the other had too short of a memory can signal wrong
convergence. We use a memory of 4 instantaneous labels. We do the
test with different levels of white noise added to the notes. The re-
sults are summarized in Table 1. In Table 3 we compare our results
to the leading pitch estimation algorithms and k-Means clustering
with number of seeds equal to the number of notes; and show that
we outperform the state-of-the-art presented in [14], [15].

As training/testing of the model takes extensive amount of time
we run Monte Carlo tests on a single model with s = 3 dimensions
in the third layer and k = 10 dimensions in the second layer. We ran-
domly initialize the parameters and train 100 different models (notes
are presented in random order for training of each model). We then
proceed and use the same methodology to determine the classifica-
tion accuracy of the models with or without using our convergence
criterion. The five best and five worst results are not considered for
the results presented here. The mean classification accuracy of the
remaining 90 models is 85.00% without using the convergence cri-
terion and is 92.17% when we use the convergence criterion. 66 out
of 90 models perform over 90% classification accuracy.

6793



Table 2. Pitch estimation accuracy of the algorithm for different second and third layer dimensions (s,k,n=60) using the convergence criterion.
HHHHHk

s
2 3 4 5 6 7 8

10 91.80% 96.94% 98.57% 98.65% 99.09% 98.41% 96.48%

12 91.19% 89.39% 96.25% 86.42% 94.28% 99.38% 99.19%

13 86.70% 97.07% 97.94% 97.69% 98.12% 98.82% 82.12%

Table 3. The table shows performance of the state-of-the-art meth-
ods on pitch estimation of isolated notes.

k-Means
(35 seeds)

YIN SWIPE’ HLDS Time Domain
HLDS

87.62% 93.71% 95.45% 96.61% 98.73%

Different model sizes are also tested with a single trained model.
Accuracy is still assessed using Monte Carlo tests where the notes
are randomly presented to the model and classified. The results are
summarized in Table 2. We can see that the model works for a wide
range of model sizes and consistently performs over 90%. There are
results where unusually low classification accuracy is observed. This
optimization has inifinitely many solutions as we simultaneously es-
timate the states and learn the parameters. In such cases the model
should be reinitialized and trained to obtain better results.

4. DISCUSSION AND CONCLUSION
This paper shows that we have successfully formed a hierarchical
model that extracts information and self-organizes this extracted in-
formation in its higher layers. This self organization leads to an
algorithm capable of clustering time series in an unsupervised man-
ner. This is substantially different from the majority of the methods
dealing with clustering of time series as they do not take advantage
of the temporal information. Most of the current work either modi-
fies the distance measures used in clustering of static data to work on
time series or extracts features from time series and applies methods
of static data clustering on them [1]. Here we simply take advan-
tage of the internal dynamics of the presented signals and exploit
them to embed the time series in smaller subspaces. When we look
at the equations, we can notice that there is an observable subspace
for each layer of states given an observation vector. As we impose
stationary behavior on the top layer, each observation vector and its
neighborhood would correspond to a local subspace in the top layer.
This can also be observed when we focus on the top-down influence.
If we consider a step function input zstep at the third layer, the steady
state response in the second layer will be as follows:

u = (
∞∑
i=0

Gi)Dzstep (7)

u = (I −G)−1Dzstep (8)
iff |λj | < 1 ∀j = 1, .., k

Therefore, given the eigenvalues of G are all less then one in
magnitude (which is guaranteed by a stable system), the steady state
response is given by (I−G)−1Dzstep. This tells us that the model is
embedding the small dimensional subspace where a particular clus-
ter exists in top layer into the lower layer via this linear transforma-
tion. The same analysis would follow in identical manner for the
lower layer. Therefore although this hierarchical model is equiva-
lent to a conventional linear dynamical system, the way the model
is trained creates different parameters from the conventional model

Fig. 2. Response of HLDS to variations of the same motif.

trained with the Kalman filter applied to the same data.
This work is the first step in building a bigger model that can

extract information on different time scales. With this initial build-
ing block we gather information about the note that is played and
the transitions between notes. Our plan is to duplicate same frame-
work to work on the output of this layer. The western music con-
sists of a hierarchical structure that starts with a note, followed by
a group of notes forming motifs, and different motifs tied together
forming themes. We created the famous first motif in Beethoven’s
5th Symphony using the trumpet notes we have. We repeatedly pre-
sented this motif to a trained model with different variations such
as dynamical amplitude variations (crescendo or decrescendo) and
tempo. We noticed that the same trajectory was followed in the state
space of the highest layer (Figure 2). Our goal is to capture these hi-
erarchical structures by forming further hierarchies using the HLDS
framework. Possible uses can be music segmentation as in [3], and
more challenging tasks of song identification, genre identification or
artist identification (using salient features that can be found in dif-
ferent compositions of a given artist). The model will be further
investigated in the future regarding its generalization property, per-
formance on songs, and model size selection.

Due to our use of a linear system the computational burden is
reasonable. The algorithm takes ≈ 11.62 ms to estimate the states
for each window (s=3, k=10, n=60). This grows linearly with the
number of reiterations over the same window of data. Usually we
reiterate 4 times over each window of new thus the computation time
for each window is ≈ 46.47 ms. As parameters are fixed after learn-
ing, the algorithm can work almost real time (each window contains
≈ 36.30 ms of new data). (The algorithm is tested in MATLAB
R2011b, using Intel Core i5-2320 3.0GHz CPU with 6GB RAM)
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