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ABSTRACT
CANDECOMP/PARAFAC tensor decomposition (CPD) approxi-
mates multiway data by rank-1 tensors. Unlike matrix decomposi-
tion, the procedure which estimates the best rank-R tensor approx-
imation through R sequential best rank-1 approximations does not
work for tensors, because the deflation does not always reduce the
tensor rank. In this paper we propose a novel deflation method for
the problem in which rank R does not exceed the tensor dimensions.
A rank-R CPD can be performed through (R − 1) rank-1 reductions.
At each deflation stage, the residue tensor is constrained to have a
reduced multilinear rank.

Index Terms— tensor decomposition, CANDECOMP/PARAFAC,
deflation, rank-1 reduction

1. INTRODUCTION

CANDECOMP/PARAFAC (CP) has found numerous appli-
cations in wide variety of areas such as in chemometrics [1],
telecommunication [2], data mining [3, 4], neuroscience [5],
separated representations [6]. The CP decomposition has
been commonly used over the years because of its simplicity.

For a matrix of rank-R, one can subtract the best rank-
1 representation from a matrix to reduce its rank [7]. It has
advantage in sequential extraction such as in SVD. Unfortu-
nately, this property in general does not hold for multiway
arrays. We can only successively perform supersymmetric
rank-1 decomposition of supersymmetric tensors [8]. How-
ever, for general tensors, we cannot obtain a good rank-R
tensor approximation through R sequential rank-1 estimations
[9]. The authors in [10] confirmed that subtracting rank-1 ten-
sor from a tensor may increase its rank.

In this paper we present a novel method for rank-reduction
problem in CP decomposition. We show that for low-rank
CP decomposition, we can sequentially extract rank-1 tensors
from a rank-R tensor if the residue tensor is constrained to be
of multilinear rank-(R−1). The method is verified by an algo-
rithm called rank reduction algorithm for CPD (summarized
in Algorithm 2).

Throughout the paper, tensors are denoted by bold calli-
graphic letters, e.g., A ∈ RI1×I2×···×IN , matrices by bold capital
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letters, e.g., A =[a1, a2, . . . , aR] ∈ RI×R, and vectors by bold
italic letters, e.g., a j. The mode-n matricization of tensor Y is
a matrix Y(n) of size In × (

∏
k�n Ik) whose j-th row is vector-

ization of sub-tensor of Y with mode-n index in = j [19].

Definition 1. (Kruskal form (tensor)) A tensorX ∈ RI1×I2×···×IN

is in Kruskal form if

X =

R∑
r=1

λr a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (1)

�
= �λ; A(1),A(2), . . . ,A(N)�, λ = [λ1, λ2, . . . , λR].

where “◦” denotes the outer product, A(n) = [a(n)
1 , a

(n)
2 , . . . , a

(n)
R ]

∈ RIn×R, (n = 1, 2, . . . ,N) are factor matrices, ‖a(n)
r ‖2 = 1, for

all r and n, and λ1 ≥ λ2 ≥ · · · ≥ λR > 0.

Definition 2. (Multilinear rank-(R1,R2, . . . ,RN) (Tucker
form)) A tensor X ∈ RI1×I2×···×IN has multilinear rank-
(R1,R2, . . . ,RN) if rank(X(n)) = Rn ≤ In for n = 1, . . . ,N.
X can be expressed in the Tucker form as

X =

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑

rn=1

gr1r2...rN a(1)
r1
◦ a(2)

r2
◦ · · · ◦ a(N)

rN
, (2)

�
= �G; A(1),A(2), . . . ,A(N)�, (3)

where G = [gr1r2...rN ] ∈ RR1×R2×···×RN , and A(n) are of full col-
umn rank.

Definition 3. (CANDECOMP/PARAFAC (CP) [11, 12])
Approximation of an order-N data tensor Y ∈ RI1×I2×···×IN by
a rank-R tensor in the Kruskal form means Y = ̂Y +E, where
̂Y = �λ; {A(n)}�, so that ‖Y − ̂Y‖2F is minimized.

For compact expression, �λ; {A(n)}� denotes a Kruskal
tensor, where �G; {A(n)}� representes a Tucker tensor. It is
worth noting that CP solution may not exist [13–15].

2. SEQUENTIAL RANK-1 TENSOR EXTRACTION
AND COMPRESSION

In this paper we consider order-N tensor Y of size I1×I2×· · ·×
IN which admits the CP decomposition (CPD) of rank R with
R ≤ In for all n. Tensor Y can be expressed as a summation
of a rank-1 tensor Y1 and a rank-(R − 1) tensor Y2, that is

Y ≈ λ1a(1)
1 ◦ a(2)

1 ◦ · · · ◦ a(N)
1 +

R∑
r=2

λr a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r

= Y1 + Y2.
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Note that tensor Y2 has rank (R − 1), and therefore its multi-
linear rank is at most (R − 1, ....,R − 1). We can write

Y ≈ �λ; a(1), a(2), . . . , a(N)� + �G; U(1),U(2), . . . ,U(N)� (4)

where U(n) are of size In × (R − 1) and G is of size (R − 1) ×
· · · × (R − 1). The decomposition is a particular case of the
block term decomposition (BTD) for order-3 tensors [16,17].
In general, in the second stage of the rank-reduction, we only
need to decompose the core tensor G of size (R − 1) × (R −
1)× · · · × (R − 1) into a rank-1 tensor and a multilinear tensor
of size (R−2)× (R−2)× · · ·× (R−2). Hence, if R 
 In, after
the first stage, dimensions of the tensor to be decomposed are
significantly reduced due to compression by U(n), and we no
longer process the original data.

The procedure is sequentially applied (R − 1) times as
described in Algorithm 1. In the last stage, the compressed
tensor has size of 2 × 2 × · · · × 2, and can be quickly de-
composed by some traditional methods or by (un)folding CP
algorithm [18]. The final solution is a Kruskal tensor whose
factor matrices comprise components of rank-1 Kruskal ten-
sors �λr; {a(n)

r }�, r = 1, . . . ,R.

Lemma 1 (Orthogonal normalization). Given a best decom-
position of Y into two tensors �λ; a(1), a(2), . . . , a(N)� and
�G; U(1),U(2), . . . ,U(N)�, where U(n) ∈ RIn×Jn , one can con-
struct an equivalent decomposition, denoted by tildas, which
has the same approximation error,

• Ũ(n) = [̃u(n)
r ] are orthogonal, i.e., (Ũ(n))T Ũ(n) = IJn ,

• a(n) and (Jn − 1) column vectors Ũ(n)
2:Jn

are mutually or-

thogonal, i.e., (Ũ(n)
2:Jn

)T a(n) = 0Jn−1.

Proof of Lemma 1 is given in Appendix. Hereinafter, we
assume that such orthogonal normalization (and rotation with
respect to a(n)) is applied to factor matrices U(n).

2.1. Update factor matrices

From the decomposition in (4), we consider a cost function
which minimizes the Frobenius norm between Y and its ap-
proximation

D =
1
2

∥∥∥Y − �λ; a(1), . . . , a(N)� − �G; U(1), . . . ,U(N)�
∥∥∥2

F , (5)

and derive the alternating least-squares algorithm which se-
quentially estimates a(n) and U(n) while fixing other parame-
ters. The cost function is written as

D =
1
2

∥∥∥∥∥∥∥Y(n) − λ a(n)
(⊗

k�n
a(k)

)T

− U(n) G(n)

(⊗
k�n

U(n)
)T

∥∥∥∥∥∥∥
2

F

, (6)

where ⊗ denotes the Kronecker product,⊗k�n U(k) = U(N) ⊗
· · · ⊗ U(n+1) ⊗ U(n−1) ⊗ · · · ⊗ U(1), Y(n) ∈ RIn×∏k�n Ik and
G(n) ∈ RRn×∏k�n Rk are mode-n matricizations of Y and
G, respectively. Due to the orthogonal normalization in

Lemma 1,
(⊗k�n U(k)

)T (⊗k�n a(k)
)
= ⊗k�n

(
U(k)T a(k)

)
=

[ρn, 0, . . . , 0]T , where ρn =
∏N

k�n(u(k)
1

T
a(k)). Gradients of the

cost function D in (6) w.r.t a(n) and U(n) take the forms

∂D
∂a(n) = −λY(n)

(⊗
k�n

a(k)
)
+ λ2 a(n)

(⊗
k�n

a(k)
)T (⊗

k�n
a(k)

)

+λU(n)G(n)

(⊗
k�n

U(k)
)T (⊗

k�n
a(k)

)
= −λ sn + λ

2 a(n) + λ ρn U(n) gn (7)
∂D
∂U(n) = −Y(n)

(⊗
k�n

U(k)
)

GT
(n) + λa(n)

(⊗
k�n

(
a(k)T U(k)

))
GT

(n)

+U(n)G(n)

(⊗
k�n

(
U(k)T U(k)

))
GT

(n)

= −Tn GT
(n) + λ ρn a(n) gT

n + U(n) G(n) GT
(n), (8)

where gn = G(n)(:, 1) is the first column of G(n), sn =

Y(n)

(⊗k�n a(k)
)

and Tn = Y(n)

(⊗k�n U(k)
)
. By setting

the gradients (7) and (8) to zeros, we derive the update rules

U(n) ←
(
T(n) GT

(n) − ρn sn gT
n

) (
G(n) GT

(n) − ρ2
n gn gT

n

)−1
,

a(n) ← 1
λ

(
sn − ρn U(n) gn

)
.

The algorithm may face numerical instability when ρn = 1,
which implies that a(k) and u(k)

1 are identical for all k � n.
For such a case, the decomposition should be restarted with
lower multilinear rank for the second block. We can see that
optimization with respect to U(n) and a(n) for one specific n is
performed in closed form. The factor matrices are then nor-
malized as in Lemma 1. The algorithm proceeds by cyclically
repeating the above procedure for all n = 1, ...,N, as shown in
Algorithm 2. Parameters a(n) and U(n) can be initialized, for
example, using the generalized rank annihilation method for
(higher order) CPD [18], or by the best rank-1 approximation
of Y and the best multilinear rank-(R − 1, . . . ,R − 1) tensor
approximation of the residue Y − �λ; a(1), . . . , a(N)� [20]. A
more efficient initialization is based on a recently developed
tensor diagonalization tool [25].

2.2. Update core tensor

In practice, we may not need to update G and λ explicitly
because they are modified due to normalization and rota-
tion of factors a(n) and U(n) at each iteration. However, for
completeness, we present the update rules for G and λ. De-
note s =

(⊗n a(n)
)T

vec(Y), t =
(⊗n U(n)

)T
vec(Y) and

ρ =
∏N

n=1(u(n)
1

T
a(n)). Setting the gradients of the cost func-

tion w.r.t λ and G to zero

∂D
∂λ

= −s + λ + ρ g1 = 0 ,

∂D
∂gi

= −ti + λ ρ δi1 + gi = 0 , i = 1, . . . ,R1R2 · · ·RN ,
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Algorithm 1: Sequential Rank-1 Reduction
Input: Data tensor Y: (I1 × I2 × · · · × IN ), rank R
Output: A rank-R Kruskal tensor X
begin

1 V(n) = IIn for n = 1, 2, . . . ,N
for r = 1, 2, . . . ,R − 1 do

2 [�λr; {a(n)
r }�, �Gr; {U(n)

r }�] = Rank-1-Reduction (Gr−1)
/* G0 = Y */
for n = 1, . . . ,N do

3 a(n)
r ← V(n) a(n)

r , V(n) ← V(n) U(n)

4 X = �λ; {A(n)}� /* λ = [λ1, . . . , λR],A(n) = [a(n)
1 , . . . , a

(n)
R ],

λR
�
= GR−1, a(n)

R
�
= U(n)

R−1 */

Algorithm 2: Rank-1 Reduction
Input: Data tensor Y: (I1 × I2 × · · · × IN ), rank R
Output: A rank-1 tensor �λ; {a(n)}� and multilinear rank tensor

�G; {U(n)}�
begin

Initialize �λ; {a(n)}� and �G; {U(n)}�
repeat

for n = 1, 2, . . . ,N do
1 U(n) ←

(
T(n)GT

(n) − ρn sn gT
n

) (
G(n) GT

(n) − ρ2
n gn gT

n

)−1

2 a(n) ←
(
sn − ρn U(n) gn

)
3 λ← ‖a(n)‖, a(n) ← a(n)

‖a(n)}
4 QR-decomposition: U(n) = Qn Zn

5 Construct Γn from Qn
T a(n) as in Appendix

6 U(n) ← Qn Γn, G← G ×n Γ
T
n Zn

until a stopping criterion is met

where gi is i-th entry of vec(G) with the linear index i, and δi,1
is the Kronecker delta, we get update rules

λ ← s − ρ t1
1 − ρ2 , gi ← ti − λ ρ δi,1. (9)

3. SIMULATIONS

3.1. An Example for Rank-3 3 × 3 × 3 Tensor

In this first example, we decompose a simple tensor of size
3 × 3 × 3 whose mode-1 unfolding is given by

Y(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0
0 1 0 1 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
This tensor has rank-3 CPD with factor matrices given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 1 1
1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 0
1 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1
1 0 0
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and λ1 = λ2 = λ3 = 1.

Let α =
3 π
8

, a = [cos(α), sin(α), 0]T , b = [1, 0, 1]T ,

c = [sin(α), 0, cos(α)]T , and λ =

√
2

2
(1 − cos(2α) + sin(2α)).

The rank-1 tensor �λ; a, b, c� has an approximation error
‖Y − �λ; a, b, c�‖2F = 13

2 −
√

2 < minr ‖Y − �ar, br , cr�‖2F =
min{6, 8, 6}, where ar, br, cr, r = 1, 2, 3 are columns of A, B
and C, respectively. This implies that extraction of the best
rank-1 tensor approximation to Y could not return any rank-1
tensor among �ar, br, cr� for r = 1, 2, 3. Notice �λ; a, b, c� is
not the best rank-1 approximation to Y.

When applying the rank-1 reduction algorithm to Y, af-
ter the first run, this algorithm extracts accurately the rank-1
tensor �a3, b3, c3�, and returns a residue tensor

X(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
After two runs, we obtained the full factor matrices of Y.

3.2. Decomposition of Rank-4 3 × 3 × 3 Tensor

In this example, we will show that the proposed deflation
method allows to decompose tensors of a rank that slightly
exceeds the tensor dimension. We considered a 3 × 3 × 3
tensor Y whose mode-1 unfolding is given by

Y(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
The tensor has rank-4, whereas its border rank is 3. Numer-
ical approximation of this tensor by CP decomposition with
rank 3 would lead to diverging factors. Our rank-1 reduction,
however, does not have such problems. The rank-1 reduc-
tion algorithm factorized the data with rank R = 3. After the
first deflation stage, we obtain a rank-1 tensor a1 ◦ b1 ◦ c1
where a1 = b1 = c1 = [0, 0, 1]T , and a rank-(2,2,2) tensor
�G; U,V,W� where

G(1) =

[
0 1 0 0
1 0 0 1

]
, U = V =W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1
1 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
After two deflation stages, we obtain a rank-3 Kruskal tensor
�λ; A,B,C� where λ = [1, 1, 1]T and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 1
0 0 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,C =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
The residue E = Y − �λ A,B,C� can be approximated by a
rank-1 tensor E = a4 ◦ b4 ◦ c4, where a4 = [0, 1, 0], b4 =

[1, 0, 0], c4 = [0, 1, 0]. Finally, Y has a rank-4 CPD Y =

�14; [A, a4], [B, b4], [C, c4]�.

3.3. Decomposition of Tensor with Diverging Compo-
nents

In this section, we decomposed a 6 × 6 × 6 tensor whose
factor matrices are introduced in [21]. Factor matrices have

6788



Estimated Components

S
ou

rc
e 

C
om

po
ne

nt
s

 

 

2 4 6

1

2

3

4

5

6

0.2

0.4

0.6

0.8

(a) Correlation degree.

1 2 3 4 5 6

10

20

30

40

50

Components

S
A

E
 (

dB
)

 

 

Factor 1
Factor 2
Factor 3

(b) Squared angular error.

Fig. 1. Performance of the rank-one reduction in decomposi-
tion of a 6 × 6 × 6 tensor.

one nondiverging component, and two groups of diverg-
ing components with their mutual angle less than 2.7o: a
group of the 1st and 2nd components, and a group of the
3rd, 4th and 5th components. The tensor was corrupted
with additive Gaussian noise of signal-to-noise ratio SNR

= −10 log10
‖Y‖2F
σ2 ∏

In
= 50 dB, where σ2 denotes the noise

variance, and ‖Y‖F is the Frobenius norm of Y. The estimated
components were evaluated through the squared angular er-
rors S AE(a, â) = −10 log10

(
acos aT â

‖a‖ ‖â‖
)2

(dB) [22–24] which
are shown in Fig. 1(b). In addition, in Fig. 1(a), we show cor-
relation between the original rank-one tensor ar ◦ br ◦ cr and
the estimated one âs ◦ b̂s ◦ ĉs. Fig. 1 indicates that 6-th com-
ponents were first estimated with high accuracy S AE > 50
dB, then diverging components 1, 2, 3, 4, 5 with lower SAE.
Thus, the proposed method helps to distinguish the stable
components from the unstable ones.

3.4. Decomposition of Random Tensors

We illustrate the performance of the rank-reduction algorithm
through decomposition of synthetic data of size 20 × 20 × 20
and 50 × 50 × 50. Factor matrices A(n) had rank of R = 10,
and were randomly generated such that their collinearity co-

efficients cr,s =
a(n)

r
T

a(n)
s

‖a(n)
r ‖ ‖a(n)

s ‖
were given in the ranges of [0.2,

0.8], [0.4, 0.8], [0.7, 0.995], see, e.g., [18, 26]. The ten-
sors were corrupted with additive Gaussian noise of signal-
to-noise ratio SNR = 10, 20, 30 and 40 dB. We generated 20
Kruskal tensors with λ1 = · · · = λR = 1, and added an i.i.d
Gaussian noise to achieve the specified SNR level. Therefore,
there were in total 1200 noisy tensors to be decomposed for
each size.

The performance of the decomposition was evaluated
through the squared angular errors, and compared with
the Cramér-Rao induced bound CRIB(a) in decibels (dB)
[22–24]. The mean SAE (MSAE) was averaged over (1200×
R) SAEs of all components in all factor matrices. Fig. 2
illustrates the SAEs achieved by FastALS [27], SeqALS
which sequentially extracts rank-1 tensor and the proposed
algorithm. Algorithms stop when differences of successive

relative errors ε =
‖Y − ̂Y‖F
‖Y‖F were lower than 10−8, or until
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0

10

20

30

40

50

SNR (dB)

M
S

A
E

 (
dB

)

 

 

CRIB
FastALS
Seq−ALS
Deflation

(a) Tensor size 20 × 20 × 20.

10 20 30 40
0

10

20

30

40

50

60

SNR (dB)

M
S

A
E

 (
dB

)

 

 

CRIB
FastALS
Seq−ALS
Deflation

(b) Tensor size 50 × 50 × 50.

Fig. 2. Comparison of SAE (dB) of CPD algorithms with
CRIB in decomposition of noisy tensors

the maximum number of iterations (1000) was achieved. In
Fig. 2, SAE of the proposed algorithm attained the CRIB for
low and high SNR levels, while SeqALS completely failed.

4. CONCLUSIONS

We proposed a novel deflation method for CPD, and con-
firmed its correctness through simulations. The method also
plays key role as tool for data compression after the first de-
flation stage, since the data to be decomposed in next stages
is of size (R − 1) × (R − 1) × · · · × (R − 1), which might be
much smaller than the original data. The method may find ap-
plication in tracking environment, when tensor is sequentially
updated - hence, there is no need to track the whole decompo-
sition but only one or a few factors. The deflation algorithm
is implemented in the Matlab package TENSORBOX which
is available online at: http://www.bsp.brain.riken.jp/
˜phan/tensorbox.php.

Appendix: Proof of Lemma 1

Proof. Let Qn be a matrix comprising an orthogonal basis of
columnspace of U(n), γn = Qn

T a(n) ∈ RR−1 and let Γn be an
(R − 1) × (R − 1) orthogonal matrix, having the first column
γn/‖γn‖, and the remaining columns form an orthogonal basis
of the orthogonal complement of γn. Note that Qn and Γn can
be obtained by QR decomposition of U(n) andγn, respectively,
or by singular value decomposition of these matrices.

Then, the new decomposition of the latter term,
�G; U(1),U(2), . . . ,U(N)� = �G̃; Ũ(1), Ũ(2), . . . , Ũ(N)� can be
defined through

Ũ(n) = Qn Γn, n = 1, . . . ,N (10)
G̃ = G ×1 (Γ1 QT

1 U(1)) · · · ×N (ΓN QT
N U(N)) , (11)

where ×n represents mode-n multiplication of a tensor and a
matrix. It can be verified that Ũ(n) are orthogonal and

(Ũ(n))T a(n) = ΓT
n QT

n a(n) = ΓT
n γn = ‖γn‖2 e1, (12)

where e1 = [1, 0, . . . , 0]T ∈ RR−1. It means that the new de-
composition obeys the required orthogonality condition. �
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