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ABSTRACT

In this paper we present an efficient initialization strategy
that improves the performance of overcomplete dictionary
learning algorithms. The procedure exploits incoherent struc-
tures that can be manipulated and adapted to a given dataset
relatively fast. The algorithm involves an iterative adaptation
of the dictionary to the dataset with pruning of the less used
atoms and constructions of new atoms that fit the data better.
Experimental simulations show that the proposed method
improves the performance of classical and new developments
in dictionary learning algorithms.

Index Terms— sparse representations, dictionary learn-
ing, initialization.

I. INTRODUCTION

Problem. We investigate the construction of overcomplete
dictionaries based on training data, also called dictionary
learning, which is of great interest in the signal processing
community [1]. Given a dataset Y ∈ R

n×N and a target
sparsity s (maximum number of atoms allowed in each rep-
resentation) the problem is to create dictionary D ∈ R

n×m

and the sparse representations matrix X ∈ R
m×N such that

Y ≈DX . The problem can be formulated as:

minimize
D,X

‖Y −DX‖F

subject to ‖xi‖0 ≤ s, 1 ≤ i ≤ N

‖dj‖2 = 1, 1 ≤ j ≤ m,

(1)

where ‖xi‖0 is the ℓ0 pseudo-norm (the number of non-
zero components in column xi), ‖E‖

2

F =
∑

i

∑

j e
2

ij is the
Frobenius norm and the columns dj of the dictionary D,
called atoms, are normalized. Most popular solutions to (1)
involve an alternating optimization process:

• Keep dictionary D fixed and optimize the sparse
representations X by using an approximate sparse
reconstruction algorithm (e.g. OMP [2], ℓ1 [3]).

• Keep the representations matrix X fixed and update
the dictionary D. Two popular update methods include
MOD [4] and K–SVD [5] (AK–SVD [6]).

The best performance (higher convergence rate and lower
running time) is achieved by the AK–SVD (Approximate
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K–SVD) algorithm which uses a Batch–OMP algorithm,
a power method approximation to the SVD steps and a
dictionary step that jointly updates an atom and all its sparse
representations.

Overall, overcomplete dictionaries are characterized,
among other, by the following important properties: rep-
resentation error ǫ = ‖Y − DX‖F , mutual coherence
µ(D) = max

i<j
|dT

i dj | and dictionary dimension m.

Contribution. In this paper we focus on constructing
dictionaries with low representation error. The main idea of
the paper is to use incoherent structures to create a very
good initialization for a dictionary learning algorithm like
AK–SVD for example.

The benefits of constructing an initial dictionary have
to overcome the cost of its construction. The proposed
initialization procedure should be very fast, so that extra
iterations of AK–SVD are not able to converge to similar
results in the same amount of time. Ideally, it should also
converge to representation error levels lower than the ones
of AK–SVD even when a good, well known, initialization
is provided.

The proposed method can also be used to initialize class
models in a supervised classification context where dictio-
naries apply [7] [8]. Here, the availability of a well known
initialization point (the same for each class) may affect
negatively the discriminative/separation power of the models.

To achieve these desirable properties, the initial dictio-
nary is learnt using rotation transforms on a given highly
incoherent initial frame. The choice of incoherent frames
is made such that a large variety of directions is explored
right from the beginning. As the algorithm progresses, some
of the unused (or less used) directions are removed and
replaced with new atoms that give a significant decrease in
the representation error. The assumption that not all atoms
in an incoherent frame are equally useful is not restrictive
since real world data should be highly correlated.

Relation with prior work. This seems to be the first time
an initialization algorithm is proposed for the overcomplete
dictionary learning problem. The review paper [9] does
not even mention initialization. Until now, most learning
procedures would either use a random initial dictionary, an
overcomplete wavelet/Fourier dictionary or a sample of data
items from Y . Of course, we compare these classic strategies
with the newly proposed initialization algorithm.

Rotation transforms (accompanied also by projections)
have been use in the past for general dictionary learning
to balance the trade-off between representation performance
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and mutual coherence [10]. The idea of (re)growing a full
dictionary from a smaller one is inspired by [11]; however,
here the added atoms are not retrained immediately, hence
the expansion is very quick.

Contents. The paper is organized as follows: Section 2
presents the initialization algorithm, Section 3 describes
numerous runs and comparisons using state-of-the-art dictio-
nary learning algorithm and Section 4 concludes the paper.

II. INITIAL DICTIONARY CONSTRUCTION

In this section we describe an initialization scheme for
overcomplete dictionary learning dictionaries based on in-
coherent dictionary learning methods.

The algorithm assumes the availability of an incoherent
frame (either overcomplete or square – orthogonal) that
serves as the initial point for a dictionary learning algorithm.
We then adapt the frame to the dataset that is provided.
We use the word adapt because the frame only suffers fast
rotational transformations. Together with the rotations we
also prune unused atoms from the frame. The idea described
in this paper is to prune under-utilized, or unused, atoms in
the initialization phase and then add new atoms by looking
at the worst constructed data items from the dataset using
the SVD. The construction of the new atoms is based on
ideas from [11]. After the initial dictionary is constructed, the
AK–SVD algorithm is applied. By using our initialization
strategy, that performs very well in terms of running time,
the hope is that fewer iterations of AK–SVD are needed to
reach the same representation errors.

In this section we focus on reaching very good repre-
sentation performance for dictionaries of fixed length m
without concern for the mutual coherence. The initialization
procedure, called DIA, developed in two stages is presented
in Algorithm 1. Step A of DIA is very fast due to the
dictionary update step 2a that only applies a SVD and
the fast sparse approximation algorithm, OMP. The highly
incoherent frames F can be provided by the IDCO algorithm
[12]. Alternatively, we can take F to be orthonormal.

Each iteration of Step A begins by constructing the
new rotation Qk that is applied to the current dictionary.
Considering the representations matrix fixed, we use (3)
to construct this rotation. At iteration k, the first step
consists mostly of matrix multiplications (even more, Xk−1

is sparse), since the SVD from (3) is applied on a small
matrix Y XT

k−1
DT

k−1
∈ R

n×n, where n ≤ m ≪ N and
hence is very fast. Notice that, if the algorithm converges,
the transforms Qk tend to In.

We mention here that we use the publicly available library
OMP-box that contains an efficient implementation of Batch-
OMP [6]. Within the library we use the fastest implemen-
tation (even though it is the most memory consuming),
whose inputs are: the target sparsity s, the projections DT

k Y
and the Gram matrix DT

k Dk. Notice that the Gram matrix
is invariant to rotation transformations (DT

k Dk = F TF ).
When an atom is pruned we also decrease the dimension
of the Gram matrix by removing the associated row and
column. In terms of speed, step 2c is by far the slowest. Over
90% of the running time is spent in this sparse approximation
step. Moreover, the dimension of the problem decreases due

Algorithm 1 Dictionary Initialization Algorithm (DIA).
Given the dataset Y , the target dimension of the dictionary
m, the incoherent frame F ∈ R

n×p, p ≤ m, the number of
iterations K, pruning threshold T , number of working atoms
L, reconstruction percentage P and sparsity s construct D ∈
R

n×m that significantly reduces ‖Y −DX‖F .

• Step A. Adapt the frame F ∈ R
n×p to the available

dataset Y by rotational transforms with an additional
pruning step to produce the dictionary D ∈ R

n×r, r ≤ m.

1) Construct representations X0 = OMP(Y ,F ).
2) Iterations k = 1, . . . ,K

a) With Dk−1 and Xk−1 fixed, find Qk by solving
the orthogonal Procrustes problem [13]:

minimize
Qk

‖Y −QkDk−1Xk−1‖F

subject to QkQ
T
k = In,

(2)

whose solution is Qk = UV T , where U , V :

Y XT
k−1

DT
k−1

= UΣV T . (3)

b) Update the dictionary Dk = QkDk−1.
c) Construct representations Xk = OMP(Y ,Dk).
d) Eliminate atoms j with score:

Sj =

N
∑

i=1

Xk(j, i)
2 < T. (4)

• Step B. With the resulting D ∈ R
n×r, with r ≤ m,

iteratively expand the dictionary until the total number of
atoms becomes m. Iterative process:

1) Construct L new atoms using the SVD on the worst
reconstructed P% data items indexed by:

W =

{

‖yi −Dxi‖
2

2

‖yi‖22

}

<1,...,⌈PN⌉>

, i = 1, . . . , N,

(5)
where z<i> stands for the index of the ith smallest
component of z. Add new atoms to D.

2) Construct new representations X = OMP(Y ,D).
3) Check if dimension of current dictionary exceeds m:

• If it does, prune the extra atoms by (4) and stop.
• Otherwise, continue iterations.

to the pruning step 2d. The atoms to be removed are selected
based on a threshold applied to the sum of the representation
coefficients squared. The pruning process depends on an
internal threshold parameter T . Taking into account that
the total energy content of the coefficients at iteration k is
S = ‖Xk‖F the threshold should be set to a percentage
of this value. Alternatively, a decision can be made based
on the relative importance of the atoms among themselves.
This pruning step is not applied at every iteration. In this
implementation we prune atoms every 10 iterations to allow
the algorithm to start its convergence and thus making sure
that the low score atoms are not in a transitional stage.

The result of this step is a dictionary D ∈ R
n×r, with
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Table I: Running times of learning algorithms and their total
representation errors, in 3 separate contexts for various s.
Initialization of K–SVD and of DIA is the same incoherent,
overcomplete random frame of size m.

m
K–SVD DIA+K–SVD(p) DIA+K–SVD
ǫ t ǫ t ǫ t

s = 4
100 32.2 12.1 32.1 1.2 31.0 11.7

128 29.9 13.7 29.9 3.3 29.4 13.4

192 27.5 17.8 27.5 6.4 27.0 17.3

256 25.9 21.4 25.9 12.3 25.6 21.5

s = 8
100 23.7 24.3 23.7 1.7 22.6 24.4

128 22.0 27.2 22.0 2.3 21.0 27.9

192 19.5 34.0 19.4 7.8 19.1 34.5

256 18.2 40.7 18.1 13.0 17.8 41.8

s = 16
100 17.2 62.6 16.3 1.9 14.7 61.9

128 15.0 67.2 15.0 2.5 13.6 67.1

192 12.4 79.9 12.4 6.6 11.7 81.1

256 11.3 93.5 11.3 11.4 10.6 95.8

r ≤ m, that is still highly incoherent but manages to provide
a good representation of Y .

Step B of DIA expands, in an iterative fashion, the
pruned dictionary obtained from Step A. The new atoms
that are added to the dictionary are computed by applying
a singular value decomposition on a small subset of the
data items that have the highest reconstruction errors in
the old dictionary. Experimentally, it has been observed that
the mutual coherence increases significantly even from the
first iteration. This means that we no longer have useful
incoherent directions to add to the current dictionary, all
new atoms added will cause consistent decreases in the
representation error.

The resulting dictionary D ∈ R
n×m is used as starting

point for the AK–SVD algorithm.

III. RESULTS

In this section we describe a set of results obtained by
DIA in various settings.

Overall, we try three popular initialization strategies: ran-
dom incoherent dictionary, random sample from the available
dataset and the overcomplete DCT.

First, we consider a set of N = 11000 image patches
(8 × 8) extracted from the publicly available dataset Yale-
Faces [14]. Means are removed and data is scaled to unit
energy. This training data is concatenated in the test ma-
trix Y ∈ R

64×11000. We design overcomplete dictionaries
D ∈ R

n×m with target sparsity s. The K–SVD1 algorithm
runs for KK–SVD = 100 iterations. We use the fast AK–SVD
(Approximate K–SVD) variant that performs very similarly
to the K–SVD. AK–SVD uses a batch OMP implementation

1http://www.cs.technion.ac.il/%7Eronrubin/software.html

Table II: Running times of learning algorithms and their
total representation errors, in 3 separate contexts for various
s. Initialization is a random subsample of the data for the
K–SVD and a random orthonormal basis for the DIA.

m
K–SVD DIA+K–SVD(p) DIA+K–SVD
ǫ t ǫ t ǫ t

s = 4
100 33.0 11.5 32.7 0.9 31.1 11.6

128 30.5 13.3 30.5 1.7 29.1 13.3

192 28.5 17.1 28.4 2.5 26.8 17.3

256 26.6 20.7 26.6 4.9 25.2 21.5

s = 8
100 25.2 24.7 23.2 0.8 21.4 24.3

128 23.3 26.9 22.3 0.9 20.1 27.2

192 20.5 32.9 20.3 2.9 18.3 34.7

256 19.5 39.0 19.2 4.8 17.2 42.5

s = 16
100 17.2 62.2 14.0 1.8 12.5 62.3

128 15.5 67.5 13.3 2.2 11.6 67.0

192 13.3 81.1 13.0 5.1 10.8 82.6

256 12.4 93.5 12.1 7.9 10.1 97.5

Table III: Stagewise K–SVD results in the same experimen-
tal context as Tables I and II.

m
s = 4 s = 8 s = 16
ǫ t ǫ t ǫ t

100 31.2 146 22.3 257 13.6 500

128 29.3 190 20.5 355 12.3 646

192 26.9 333 18.2 563 10.5 1085

256 25.4 507 17.0 828 9.6 1570

and an approximation of the SVD with the power method
to greatly reduce the running time.

We begin by showing in Figure 1 an internal result
regarding the evolution of the DIA when initialized with an
incoherent frame of size p = 320 and a random orthonormal
basis, for K = 150 and K = 50 iterations respectively. Of
course, the pruning process is less effective for the smaller
orthonormal frame. Parameters of DIA in all experiments:
P = 5%, L = 20 and T = S/100 where S = ‖Xk‖F .

Generally, we are interested in performance indicators
(total representation error ǫ and running time t, in seconds)
for K–SVD with DIA start in the following contexts:

• DIA+K–SVD(p) – a partial run of K–SVD. The al-
gorithm stops earlier than KK–SVD iterations if the
representation error of K–SVD is achieved.

• DIA+K–SVD – a full run by K–SVD.

The simulation results are presented in Tables I and II.
In these two contexts, the starting point is provided by
DIA. The difference is that in one case (Table I) the initial
frame is a highly incoherent, overcomplete frame of size
m while in the second case the initial frame is a random
orthonormal matrix. As expected, observe that within each
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Fig. 1: Evolution of dictionary dimension with number of
iterations for DIA for an initial highly incoherent overcom-
plete of size 320 (up). Same simulation context as previous
plot for an initial orthonormal frame of size m = 64 (down).

table the representation error is smaller when using the DIA.
For slightly lower representation error, the running time is
reduced greatly while for the full run the process converges
to lower error. Across Tables I and II the DIA outperforms
the two initializations used for the K–SVD. The partial runs
finish in general much sooner than the regular K–SVD.
Interestingly, observe that representation errors for K–SVD
are higher when initializing with a subset of the dataset.

To serve as reference, we also present the results obtained
by using Stagewise K–SVD [11] in Table III with internal
parameters H = 3, R = 3. This method does not need an
initialization. It trains and builds the dictionary by increasing
its dimension at every step so that it produces a significant
decrease in the representation error. The drawback of such
a method is the high running time. In terms of the represen-
tation performance the results are slightly better.

Considering the new developments in dictionary learning
algorithms presented in [15] and named DT, we provide
some comparative results by using the publicly available
source code of this paper. We show that the initialization
strategy proposed in this paper lowers the representation er-
rors no matter what strategies are deployed in the dictionary
update and coefficient computation steps (all of which can
be seen as extensions of the basic K–SVD algorithm). We
consider the Dictionary Update Cycles (DUC) method that
consists of multiple dictionary updates step (in between each
OMP step) and the new Coefficient Reuse OMP (CROMP)
which is a variant of OMP that uses the coefficients com-
puted in the previous step of K-SVD as a warm start for

Table IV: Comparison of DIA with dictionary learning
strategies described in [15]. The initialization is done using
a random sample of the dataset. Target sparsity is s = 4 and
DIA starts with an orthonormal frame.

m
100 128 192 256

DT, DUC = 1 22.26 21.06 19.42 18.38

DIA+DT, DUC = 1 21.37 20.24 18.90 17.84

DT, DUC = 4 22.07 21.09 19.41 18.36

DIA+DT, DUC = 4 21.25 20.19 18.81 17.80

DT + CROMP 19.95 18.49 17.50 16.81

DIA+DT+CROMP 18.36 17.56 16.60 15.96

Table V: Same context as Table IV but the initialization is
done using an overcomplete DCT dictionary and DUC = 4.

m
100 128 192 256

DCT+DT+CROMP 18.35 17.63 16.68 15.98

DIA+DT+CROMP 18.16 17.48 16.57 15.90

the new OMP application. This new simulation context is
the one provided by [15]: the training data consisting of
N = 10000, 8 × 8 patches extracted from popular test
images (Lena, peppers, boat etc.), s = 6, the DC component
removed and normalized. We compare the initialization strat-
egy used (random selection of data items) to DIA. Results
are presented in Table IV.

In the last experimental context, we utilize the DT training
methods initialized with an overcomplete DCT (ODCT)
frame. Since these dictionaries perform very well with image
data we expect the results to be closer than in previous
simulations. Of course, whenever good initial dictionaries are
available they should be the first choice. Still, the results in
Table V show that DIA is able to produce very good results,
especially for larger dictionaries. In this last run, Step A
reduces the initial frame F to produce a dictionary that has
only, in increasing order of frame sizes m: 39, 43, 58 and
55 atoms. Step B then proceeds to complete the dictionaries
to the full length m.

IV. CONCLUSIONS

In this paper we describe an initialization algorithm for
the efficient construction of dictionaries used in the sparse
overcomplete learning framework. The method is based on
incoherent structures that are pruned and then adapted to
the available dataset, while they span various directions
of the working space. The results show that the method
provides very good initial dictionaries that allow the learning
methods to reach lower representation errors. All numerical
experiments use the K–SVD algorithm (and variants) to
prove the concept.
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