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ABSTRACT 
 
The recently proposed UNCLES method has the ability to unify 
clustering results from multiple datasets under different types of 
external specifications. It can also tunably tighten the results such 
that many objects are unassigned from all of the clusters to obtain 
few tight clusters. Despite the success of this method, setting its 
parameters, such as the number of clusters (K) and the tuning 
parameters δ and (δ+, δ-), has never been automated. As its clusters 
vary in size, they cannot be validated by the existing validation 
indices. In this study we present a technique of validation based on 
our proposed M-N scatter plots. This technique has the ability to 
provide better fitness values for the clusters which include more 
objects while preserving their tightness. This well suits the nature of 
the results of UNCLES. We have applied this technique to a set of 
bacterial microarray datasets as well as a set of English vowels 
datasets. Our results demonstrate the success of the M-N plots in 
selecting the best few clusters out of a pool of clusters generated 
under varying K, δ, and (δ+, δ-) values. Our results also show that the 
best few clusters can be originated from different partitions, which 
shows the power of our technique in evaluating individual clusters 
rather than whole partitions. Finally, despite proposing this 
technique within the context of the UNCLES framework, it is readily 
applicable to other clustering results, especially when the parameters 
are not confidently predefined. 

 

Index Terms— M-N plots, UNCLES, Bi-CoPaM, 

clustering validation, gene expression 

 

1. INTRODUCTION 
 
Unsupervised clustering methods have been widely used in a variety 
of applications, including the identification of the subsets of co-
expressed genes, i.e. the genes whose genetic expression profiles are 
highly correlated. Generic clustering methods, such as k-means [1], 
self-organising maps (SOMs) [2], and hierarchical clustering (HC) 
[3], have been commonly used by the bioinformatics community to 
achieve the aforementioned objective [1,2,3]. Other clustering 
methods have been proposed within the specific context of gene 
clustering to tackle some aspects that emerge within this context, 
such as the recently proposed method, the binarisation of consensus 

partition matrices (Bi-CoPaM) [4,5,6], and its more recent 
generalisation, the unification of clustering results from multiple 
datasets using external specifications (UNCLES) [7]. Despite being 
proposed within the context of gene clustering, those methods can 
be applied to any other application with analogous aspects. 

Rather than identifying the subsets of co-expressed genes in a 
single gene expression dataset (e.g. microarray dataset), the Bi-
CoPaM method was proposed to allow for the identification of the 
subsets of genes consistently co-expressed over multiple datasets 
[4]. From a biological point of view, the expression profiles for a 
subset of genes might be found correlated for reasons other than that 
they are contributing to the same biological process [8], even though, 
consistent co-expression (correlation) of the same subset of genes 
over multiple datasets provides a stronger hypothesis that those 
genes contribute to the same biological process [8]. Moreover, the 
Bi-CoPaM method, in contrast to other clustering methods, allows 
any single gene to have any of the three eventualities, to be 
exclusively assigned to a single cluster, to be simultaneously 
assigned to multiple clusters, or not to be assigned to any of the 
clusters [4]. This tackles the biological fact that any gene can 
participate in one biological process, multiple biological processes, 
or to be irrelevant to the processes under investigation [4]. This leads 
to the generation of clusters with varying levels of tightness from 
being wide and overlapping, to being complementary, to being tight 
and focused with many genes left without assignment [4]. 

In ICASSP 2013 [6], Abu-Jamous and colleagues proposed the 
application of the Bi-CoPaM method to genome-wide scale datasets, 
i.e. datasets with all of the genes included without pre-filtering [6]. 
They demonstrated the usefulness of the tunable tightness feature 
which allows the Bi-CoPaM to filter out the genes which are not 
consistently co-expressed over the given datasets, and that the other 
commonly used pre-filtering techniques would pre-eliminate many 
genes that are preserved by the Bi-CoPaM [6]. In a more recent study 
[7], they proposed the UNCLES method as a generalisation of the 
Bi-CoPaM. UNCLES unifies the clustering results from multiple 
datasets using different types of external specifications [7]. The first 
type is equivalent to Bi-CoPaM, which unifies the results to identify 
the subsets of genes consistently co-expressed in all of the provided 
datasets. The second type unifies those results in order to identify 
the subsets of genes consistently co-expressed in one subset of 
datasets while being poorly consistently co-expressed in another 
subset of datasets [7]. This issue has been mentioned in the literature 
without being fully tackled by an unsupervised method [8,9]. 

Some important aspects in those methods were stated to be 
unsolved yet [4]. The first aspect is setting the number of clusters 
(K) and the tuning parameter δ used to tighten or widen the clusters; 
these used to be either predetermined or set semi-manually [4,5,6]. 
The second aspect is an appropriate clustering validation technique 
which suits the tunable nature of these methods’ results. Although 

This article summarises independent research funded by the 
National Institute for Health Research (NIHR) under its Programme 
Grants for Applied Research Programme (Grant Reference Number 
RP-PG-0310-1004). The views expressed are those of the author(s) 
and not necessarily those of the NHS, the NIHR or the Department 
of Health. A.K. Nandi would like to thank TEKES for their award 
of the Finland Distinguished Professorship. 

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6776



those aspects were identified and stated while proposing the Bi-
CoPaM [4], they were not solved even after proposing its 
generalisation, UNCLES [7]. In fact new parameters were 
introduced with UNCLES, namely the pair (δ+, δ-), which also need 
to be properly set [7]. 

In this study, we propose a novel clustering evaluation 
technique, M-N plots, which suits the varying tightness nature of 
both types of the UNCLES’ method (the first type is equivalent to 
the Bi-CoPaM), and can be used to resolve the issues of identifying 
the most appropriate number of clusters (K) as well as the other 
tuning parameters. We also demonstrate that this method can be 
applied to applications other than gene clustering. 

 

2. METHODS 
 

2.1. Bi-CoPaM 
 
Given a set of datasets, e.g. gene expression datasets generated under 
various biological conditions and contexts, and a set of clustering 
methods (e.g. k-means, SOMS, etc.), the Bi-CoPaM method is 
applied through the following four main steps [4,6]: 

1) Each of the clustering methods is applied to each of the 
datasets to provide a pool of individual partitions. 

2) The partitions are relabelled such that each cluster from 
any partition is mapped to its corresponding cluster from 
all of the other partitions. 

3) Relabelled partitions are combined to produce a single 
fuzzy consensus partition matrix (CoPaM). 

4) The fuzzy CoPaM is binarised by one of six binarisation 
techniques to produce a final binary CoPaM. 

Here we concentrate on one binarisation technique, which is the 
difference threshold binarisation (DTB) [4,6]. DTB assigns any 
object (e.g. gene) to the cluster in which it has its maximum fuzzy 
membership only if its closest competing cluster is at least far by the 
value of the parameter δ; this object is not assigned to any of the 
clusters otherwise. When δ is zero, each object is assigned to the 
cluster in which it has its higher membership unconditionally. While 
δ is increased, more objects are unassigned from all of the clusters, 
and therefore tighter and more focused clusters are produced. The 
tightest clusters are produced when δ reaches unity, the case at which 
an object is assigned to a cluster only if its membership in that cluster 
is one with zero membership in all of the other clusters. 

 

2.2. UNCLES 
 
The UNCLES method [7] has two types, A and B, where type A is 
equivalent to the Bi-CoPaM method. In terms of gene expression 
analysis, type B tackles the question of identifying the subsets of 
genes consistently co-expressed in a subset of datasets, S+, while 
being poorly co-expressed in another subset of datasets, S-. 
UNCLES is applied through the following steps: 

1) The Bi-CoPaM is applied to each of the two subsets of 
datasets, S+ and S-, independently and respectively with 
the DTB δ values δ+ and δ-, i.e. the parameter pair (δ+, δ-). 

2) The genes which are preserved in the results of the Bi-
CoPaM applied to S- at δ-, i.e. the genes which are 
consistently co-expressed in S-, are excluded from the 
clusters generated by the Bi-CoPaM applied to the S+ 
datasets at δ+. 

The resulting clusters include the subsets genes deemed as 
consistently co-expressed in S+ at δ+ while being deemed as 
consistently poorly co-expressed in S- at δ-. Therefore, δ+ controls 
how strongly consistently co-expressed the genes need to be in S+ in 
order to be included, and δ- controls how strongly co-expressed the 
genes need to be in S- in order to be excluded. 

2.3. Proposed M-N Scatter Plots 
 
The mean squared error (MSE) metric has been used in many studies 
to evaluate the quality of the generated clusters [6,7,10,11]. The 

𝑀𝑆𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟 metric, which quantifies the average MSE for the 𝑘𝑡ℎ 
cluster, is defined as: 

 𝑀𝑆𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑘) =
1

𝐷 ∙ 𝑁𝑘
∑ ‖𝑥𝑖 − 𝑧𝑘‖

2

𝑥𝑖∈𝐶𝑘

, (1) 

where 𝐷 is the number of dimensions (time-points) in the dataset, 

𝑁𝑘 is the number of genes in the 𝑘𝑡ℎ cluster, 𝐶𝑘 is the set of genetic 

expression profiles {𝑥𝑖} for the genes in the 𝑘𝑡ℎ cluster, and 𝑧𝑘 is the 

mean expression profile for the genes in the 𝑘𝑡ℎ cluster. 
MSE is biased towards smaller clusters which include fewer 

genes, where the trivial case of a cluster which includes a single gene 
is provided the best MSE value of zero [6]. This renders the MSE 
metric, as it is, inappropriate for evaluating the results of both types 
of UNCLES because of their tunable tightness / size nature. 
Therefore, we propose evaluating the clusters based on both the 
number of genes included in them (N) and an MSE-based metric 
(M). The objective is to minimise the dissimilarity of the genes 
within the cluster, i.e. to minimise the MSE-based metric value, 
while maximising the number of objects included. 

The MSE-based metric (M) for UNCLES type A is the average 
of all MSE values calculated based on each of the given datasets. For 
type B, it is defined as the signed difference between the average of 
MSE values based on the S+ subset of datasets, and the average of 
MSE values based on the S- subset of datasets. 

The M-N scatter plot is a plot on which the clusters are 
scattered, whose horizontal axis is the MSE-based metric (M), and 
whose vertical axis is the logarithm of the number of genes included 
in the cluster (N). When the axes limits are set to the limits of 
scattered clusters and normalised, the top left corner is considered as 
the best point at which N is maximised and M is minimised. 

The clusters which are scattered on an M-N plot can be from all 
of the UNCLES experiments which consider various values of K, δ, 
and/or (δ+, δ-). The best of all of those clusters is that which is closest 
in Euclidean distance to the top left corner of the M-N plot. After 
selecting this best cluster, all of the other clusters which share at least 
one object with it are removed from the plot; that is because they are 
considered as other versions of the same cluster but with degraded 
quality. The process of selecting the best cluster and removing the 
ones similar to it is repeated many times in order to select the best 
distinct clusters from that pool of all available clusters. Once there 
is a big leap in the distances from the top left corner between two 
consecutively selected clusters, the process terminates. 

 

3. DATA, EXPERIMENTS, AND RESULTS 
 
We have conducted two experiments to test our proposed technique. 
The first experiment involves five Escherichia coli (E. coli) bacteria 
microarray datasets while the second involves a non-genetic English 
vowels data tensor split into five datasets. 
 

3.1. Real Bacterial Microarray Datasets 
 
E. coli bacteria, which is a widely used model organism for 
microbiological studies, is commonly found in the lower intestine of 
warm-blooded organisms. Five microarray datasets have been 
considered in this experiments and they are listed in Table 1. The 
first column shows the labels we shall use hereinafter to refer to 
those datasets, such that the letters ‘P’ and ‘N’ respectively indicate 
positive and negative datasets with reference to their treatment under 
UNCLES type B. The second to the fifth columns respectively show 
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the GEO accession identifier, the number of dimensions (samples) 
(D), a short description, and the reference for each of the five 
datasets. The K-12 strain (genetic variant) was used in all of the five 
datasets and therefore we have considered the entire K-12 strain’s 
genome, consisting of 4,345 genes, in our analysis. 

UNCLES type A was applied to the five datasets and UNCLES 
type B was applied to them while considering the datasets P1 and P2 
as the positive subset of datasets (S+) and N1, N2, and N3 as the 
negative subset of datasets (S-). The number of clusters (K) was 
varied for both types to include all values from two to twenty in 
addition to 25, 30, and 50. The parameters δ for type A, and δ+ and 
δ- for type B were varied from zero to unity with steps of 0.1. 

 

3.1.1. Results 
 
UNCLES types A and B respectively have generated 3,454 and 
37,994 individual clusters while varying the values of K, δ and (δ+, 
δ-), 1,167 and 23,260 of them were non-empty, respectively. The 
clusters from type A are scattered in the top-left sub-plot in Figure 1 
with three different symbols. The blue solid circle represents the 
closest cluster to the top-left corner, and therefore it is the cluster 
selected by the proposed technique as the best cluster. The red stars 
represent all of the other clusters that share at least one gene with 
that selected cluster, and the black squares are the rest of the clusters. 
This first selected cluster is referred to with the label ‘A1’. We have 
found 571 clusters that share genes with A1. The clusters 
represented by the blue solid circle and all of the red stars are 
removed from this M-N plot to produce the M-N plot ‘A2’. The same 
procedure has been applied to this reduced M-N plot version to select 
the second best cluster that is distinct from A1. The first three 
iterations of this process, which select A1, A2, and A3, are shown in 
Figure 1. This Figure also shows three similar iterations applied to 
the results of type B to select B1, B2, and B3. 

Table 2 shows some details about the top four selected clusters 
for both types A and B. The Table has two almost identical subsets 
of columns for the two types A and B. The first column in each 
subset of columns shows the identifiers with which the clusters have 
been labelled. The second to the sixth columns respectively show the 

numbers of genes, MSE-based metric values, the K values under 
which the clusters have been generated, δ or (δ+, δ-) values, and the 
distances (d) from the top-left corners of the normalised M-N plots. 
It can be seen in this Table that the top clusters are selected from 
various K values and under various δ or (δ+, δ-) values. 

Figure 2 (a) and (b) show the distances from the M-N plots top-
left corners of the top eight clusters selected for UNCLES types A 
and B respectively. This Figure can aid the researcher’s decision on 
how many top clusters should be selected before termination. For 
example, there is an obvious leap in the distances after the second 
cluster in each of the two types, and therefore, one might consider 
those first clusters and discard the remaining ones. One might 
consider the third and the fourth clusters as well with a lower level 
of confidence. Indeed this is an application specific decision. 

3.1.2. Biological Reasoning 
 
The Gene Ontology (GO) initiative associates genes with the terms 
of the biological processes in which they participate. This is actively 
updated based new findings in biology and related sciences. We have 
performed GO term analysis over the top clusters generated by both 
UNCLES types A and B and selected by the M-N plots technique. 

The cluster A1 was found to be enriched with many terms 
related to translation, which is the process that produces proteins in 
the cells. Some of those terms are ‘translation’ (p-value 1.7×10-4), 
‘tRNA modification’ (p.v. 1.4×10-4), ‘tRNA methylation’ (p.v. 
3.9×10-4), and ‘polyamine transport’ (p.v. 1.4×10-4). Translation, 
which is at the core of the central dogma of molecular biology, is a 
global property of cells under various conditions and across species 
from bacteria and fungi to plants and animals [17]. Thus, discovering 
A1 in our results meets this biological fact because UNCLES type 
A identifies the subsets of genes consistently co-expressed in all of 
the considered datasets generated under various conditions. 

The top cluster in UNCLES type B ‘B1’ has been found highly 
enriched with many processes needed under stress and perturbation 
conditions such as ‘DNA repair’ (p.v. 2.4×10-4) and ‘response to 
heat’ (p.v. 1.7×10-3). Recall from Table 1 that the positive subset of 
datasets (P1 and P2), in contrast to the negative subset of datasets 
(N1 to N3), is related to different types of perturbations and stresses. 
Again, the top cluster discovered by our UNCLES type B method 
well meets this biological reasoning. 

Table 1. Escherichia coli bacteria microarray datasets 

ID GEO acc. D Description Ref. 

P1 GSE9923 10 Perturbations including temperature [12] 

P2 GSE10159 18 Peptidoglycan stress [13] 

N1 GSE20374 9 Varying cofactors NADH and ATP [14] 

N2 GSE34275 12 Varying glycerol [15] 

N3 GSE34631 6 Varying glycol and glycerol [16] 

Table 2. Top four E. coli clusters generated by UNCLES types 

A and B and selected by M-N plots 

ID N* M K δ d ID N* M K (δ+, δ-) d 

A1 291 0.53 2 0.8 0.70 B1 258 -0.27 6 (0.4,0.8) 0.45 

A2 27 0.32 4 0.7 0.71 B2 309 -0.22 5 (0.1,0.8) 0.47 

A3 55 0.46 6 0.6 0.75 B3 98 -0.34 9 (0.4,0.8) 0.51 

A4 43 0.45 9 0.4 0.76 B4 135 -0.26 7 (0.6,0.7) 0.52 

* ‘N’ in the M-N plots is the base-10 logarithm of the number of 

genes while in this Table it is the absolute number of genes. 

Figure 1. M-N plots for the first three selected bacterial clusters 

by types A and B of UNCLES. M is the MSE-related metric and 

N is the logarithm of the number of genes. 
Figure 2. Distances from the top-left corner of the M-N plots for 

the top eight clusters in UNCLES (a) type A and (b) type B. 
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3.1.3. Comparison with Other Validation Indices 
 
We have compared our M-N scatter plots approach with two 
clustering validation indices, namely the MSE metric [10] and the 
silhouette [18]. The silhouette metric is an object-based validation 
metric which quantifies the fitness of any object (e.g. gene) in the 
cluster to which it is assigned. We have applied this metric to the 
partitions generated by both types of UNCLES and then considered 
that the fitness of any cluster is the average of the fitness values of 
its members. We have not considered the validation indices which 
only provide fitness values for whole partitions rather than 
individual clusters because such comparison would not be applicable 
in the context of our study. 

The top 150 UNCLES type A clusters, as sorted by the MSE 
and the silhouette metrics, include no more than four and 34 genes 
respectively. This is out of 1,167 non-empty clusters. As for type B, 
the top 1,000 clusters, out of 23,260 non-empty ones, include no 
more than 56 and 33 genes when sorted by the MSE and the 
silhouette metrics respectively. This clearly shows the tendency of 
these two metrics towards praising very small clusters. 

Moreover, the top clusters selected by M-N plots have been 
found not to top the sorted lists based on the MSE and the silhouette 
metrics. For example, A1 and A2 were overtaken by 42% and 21% 
of the non-empty clusters respectively based on the MSE metric. A2 
was overtaken by 13% of them based on silhouette which silhouette 
failed to evaluate A1 because its partition happened to have only one 
non-empty cluster. Similarly, B1 and B2 were overtaken by 22% and 
38% based on MSE, and by 45% and 55% based on the silhouette, 
respectively. This indicates that such metrics cannot be used to 
assess the results of the methods like UNCLES which generate 
tunable clusters ranging in sizes from empty to extremely large. 

 

3.2. English Vowels Real Datasets 
 
Harshman and colleagues measured the positions of thirteen points 
across the tongue of five native English speakers while uttering each 
of ten different vowels [19,20]. The ten vowels are the ones 
encapsulated between the letters h and d in the ten words “heed, hid, 
hayed, head, had, hod, hawed, hoed, hood, and who’d.” The data 
from any of the speakers represent one single dataset and therefore 
there are five datasets; the ten words are the objects to be clustered 
while the thirteen distance values are their features. 

UNCLES type A was applied to these five datasets to identify 
the subsets of words (vowels) at which the tongue’s position is 
consistently similar across multiple speakers. The number of clusters 
(K) was varied from two to ten and the δ values were varied from 
zero to unity with steps of 0.1. Therefore, the results contained 594 
individual clusters, 335 of which found to be not empty. Successive 
iterations of the M-N plots technique have been applied to this pool 
of clusters to select the top ones of them. No clusters were left in that 
pool after the fourth iteration and therefore the process terminated. 

Figure 3 shows the distances from the top-left corners of the M-
N plots for those clusters which are labelled C1 to C4 respectively. 
The first two clusters are significantly better than the last two.  Table 
3 shows the membership of the ten words (vowels) in each of the 
four clusters. These results can be intuitively validated by noticing 
that the first two clusters clearly include two distinct groups of 
vowels. Moreover, the M-N plots ranking for the clusters has 
elevated the clusters which include more vowels while preserving 
some tightness because this better meets the original question of 
which subsets of vowels are consistently correlated in terms of 
tongue’s geometry across various speakers. 

 

4. DISCUSSION AND CONCLUSIONS 
 
We have presented a novel validation technique based on the M-N 
scatter plots, which can resolve the issue of setting the parameters 
K, δ, and (δ+, δ-) for the UNCLES method. 

Despite the previously demonstrated success of the UNCLES 
framework across various studies, it has always been considered 
with a predefined number of clusters (K), and with semi-manually 
selected δ and (δ+, δ-) values, and its results have always been mainly 
validated by biological reasoning rather than numerical validation 
[4,5,6,7]. Furthermore, Abu-Jamous and colleagues have explicitly 
stated that the unconventional nature of the results of the Bi-CoPaM 
(UNCLES type A) requires designing an applicable validation 
technique as well as a technique to identify the optimum parameters’ 
values [4]. As shown in this study, those previously unresolved 
issues have been successfully tackled by our M-N scatter plots. 

The clusters generated by UNCLES are tunable such that the 
same cluster can have various versions from being extremely small 
to extremely large when produced under various δ and (δ+, δ-) values 
[4,6,7]. Varying the number of clusters (K) as well would generate 
similar, split, or combined versions of clusters [4,6,7]. It has been 
shown in this study that the best clusters do not tend to belong to the 
same partition, i.e. to the same clustering result generated under the 
same K, δ, and (δ+, δ-) values (Table 2). Therefore, clustering 
validation techniques which provide a single fitness value for each 
whole partition, such as DI [21], CH [22], and GI [23], are not 
applicable to this problem in hand. On the other hand, the MSE 
metric [10] provides fitness values for individual clusters, and the 
silhouette [18] index provides fitness values for each of the objects 
(genes) within the clusters. The average of the values from the later 
one can be used as fitness values for individual clusters. As can be 
seen in our results, such indices have the tendency to give better 
values for smaller clusters and are not applicable to the nature of 
UNCLES’ results. 

Although we have proposed the M-N scatter plots technique in 
the context of the UNCLES framework, it is applicable to the 
broader area of applications in which clustering produces varying 
sized clusters. Moreover, the idea of selecting the best few distinct 
clusters out of a pool of clusters stimulates bypassing the boarders 
of the partitions to dissolve all of the clusters generated under 
various sets of parameters into such a pool. This can be applied to 
other clustering methods which involve parameter setting and even 
to a pool of clusters generated by various methods. Additionally, we 
have demonstrated, for the first time, the applicability of the 
UNCLES method to non-biological applications which widens the 
horizon of its possible applications. 

In conclusion, we have shown the unique ability of our 
proposed M-N scatter plots technique in resolving the UNCLES 
methods’ issue of cluster validation and parameter setting, as well as 
the applicability of the UNCLES method to a wider range of 
applications. We have also elucidated the potential usefulness of the 
M-N plots technique in other than the context of UNCLES. 

Table 3. English vowels clusters’ members 

C1 C2 C3 C4 

hod, hawed, hoed, hood heed, hid, hayed, head who'd had 

Figure 3. M-N plots’ distances for the top four clusters of 

English vowels. 
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