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ABSTRACT

Unsupervised feature learning with deep networks has

been widely studied in the recent years. Despite the progress,

most existing models would be fragile to non-Gaussian noises

and outliers due to the criterion of mean square error (MSE).

In this paper, we propose a robust stacked autoencoder (R-

SAE) based on maximum correntropy criterion (MCC) to

deal with the data containing non-Gaussian noises and out-

liers. By replacing MSE with MCC, the anti-noise ability of

stacked autoencoder is improved. The proposed method is

evaluated using the MNIST benchmark dataset. Experimental

results show that, compared with the ordinary stacked autoen-

coder, the R-SAE improves classification accuracy by 14%

and reduces the reconstruction error by 39%, which demon-

strates that R-SAE is capable of learning robust features on

noisy data.

Index Terms— Unsupervised feature learning, stacked

autoencoder, correntropy, deep learning

1. INTRODUCTION

Unsupervised feature learning algorithms aim to find good

representations for data, which can be used for classification,

reconstruction, visualization and so on. Recently, deep net-

works such as stacked autoencoders (SAE) and deep belief

networks (DBN) have shown high feature learning perfor-

mance that matches the current state-of-the-art [1, 2, 3, 4].

Despite the progress, robust feature learning is still faced

with challenges due to noise and outliers which are commonly

appeared in the real-world data. In order to improve the anti-

noise ability of the deep networks, efforts have been made.

Vincent et al. [5, 6] modified the traditional stacked autoen-

coder to learn useful features from corrupted data and devel-

oped the stacked denoising autoencoder (SDAE). By corrupt-

ing the input data and using denoising criterion, the SDAE
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could learn robust representations and achieve good perfor-

mance under different types of noises. The SDAE model

was then extended by Xie et al. [7] with sparse coding tech-

nique (spSDAE). With the reconstruction loss regularized by

a sparsity-inducing term, better denoising performance was

achieved. Although the existing methods show strength un-

der some noises such as Gaussian noise, they would be frag-

ile in case that the data contain large amounts of outliers. The

reason lies that most models are based on mean square error

(MSE) criterion which would be sensitive to outliers [8, 9].

Recently, correntropy was proposed as a localized simi-

larity measure based on information theoretic learning (ITL)

and kernel methods [10]. It is insensitive to outliers compared

with MSE and has been successfully utilized for cost func-

tion design in non-Gaussian signal processing [11, 12]. Jeong

et al. [13] extended the minimum average correlation energy

(MACE) filter to non-linear with correntropy to obtain better

distortion tolerance. He et al. [14] proposed a robust principal

component analysis method based on maximum correntropy

criterion to achieve high performance under outliers. These

studies show that, correntropy is robust to outliers so that it is

promising for robust algorithm design.

Inspired by the success of correntropy-based approaches

in outlier suppression, this paper proposes a robust stacked

autoencoder (R-SAE) model with maximum correntropy cri-

terion (MCC). The R-SAE method improves the anti-noise

ability of traditional autoencoders by replacing MSE with

MCC. Taking advantage of insensitivity of MCC to noise,

our method is capable of handling non-Gaussian noises with

large outliers. The proposed R-SAE model is tested on the

MNIST benchmark dataset with heavy-tailed non-Gaussian

noise. Results show that, the MCC-based R-SAE method

is superior to standard stacked autoencoders (S-SAE) and

shows high performance in feature extraction and denoising

under a large number of outliers.

2. OUR METHOD

In this section, we first briefly introduce the correntropy mea-

sure. Then we combine the correntropy and autoencoder into
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a MCC-based robust autoencoder which is capable of deal-

ing with non-Gaussian noises. After that, we stack the robust

autoencoders to build a deep network for high-level feature

learning.

2.1. Correntropy

Correntropy, as proposed in [10], is defined as a localized sim-

ilarity measure. In comparison with traditional second-order

statistics such as MSE, correntropy is less sensitive to out-

liers. The correntropy between two random variables X and

Y is defined by:

Vσ(X,Y ) = E[κσ(X − Y )], (1)

where E[.] denotes the mathematical expectation and κσ(.) is

the Gaussian kernel with σ as the kernel size:

κσ(.) =
1√
2πσ

exp(− (.)2

2σ2
). (2)

The correntropy induces a new metric that, as the distance

between X and Y gets larger, the equivalent distance evolves

from 2-norm to 1-norm and eventually to zero-norm when X

and Y are far apart [11]. Therefore, the correntropy measure

has good property of outlier rejection.

In practice, the joint probability density function is un-

known and only a finite set of samples of {(xi, yi)}Ni=1 are

available for X and Y respectively. Then the estimated cor-

rentropy can be obtained by:

Ṽσ(X,Y ) =
1

N

N∑

i=1

κσ(xi − yi). (3)

2.2. Robust Autoencoders

Autoencoders aim to learn a compressed representation of

data with minimum reconstruction loss. An autoencoder is a

three-layer network including an encoder and a decoder. The

encoder maps the input vector x to the hidden layer with a

non-linear function:

x′ = s(W(1)x+ b(1)), (4)

where s(.) is the sigmoid function. The decoder maps the

hidden layer to the output layer that has the same number of

units with the input layer:

y = s(W(2)x′ + b(2)). (5)

In order to reconstruct the input data from the output layer,

the parameter set θ = {W(1),b(1),W(2),b(2)} is optimized

by minimize the reconstruction loss. In the standard autoen-

coder model, the reconstruction loss is defined by the MSE

between the input vector x and the output vector y. How-

ever, it is sensitive to outliers so that the feature learning abil-

ity would be fragile given highly noised data. Therefore, we

modify the reconstruction loss by MCC for a more robust

model. The cost function of robust autoencoder is defined

as follows:

Jcost(θ) = −JMCC(θ) + Jweight(θ) + Jsparse(θ). (6)

In the formulation of Jcost(θ), we employ a MCC-based

loss function and two constraint terms. The reconstruction

loss function of our method is defined as:

JMCC(θ) =
1

m

m∑

i=1

n∑

j=1

κσ(x
j
i − y

j
i ), (7)

where m is the number of training samples and n is the length

of each training samples. The optimal parameter θ is obtained

when JMCC(θ) is maximized.

The weight decay term Jweight(θ) is added to prevent

overfitting. It is defined as follows:

Jweight(θ) =
λ

2

2∑

l=1

sl∑

i=1

sl+1∑

j=1

(w
(l)
ji )

2, (8)

where w
(l)
ji represents an element in W(l), λ is the parameter

to adjust the weight of Jweight(θ) and sl denotes number of

units in layer l.

The sparsity penalty term Jsparse(θ) is employed as in [7]

for better denoising ability. It is defined by:

Jsparse(θ) = β

s2∑

i=1

KL(ρ‖ρ̂i), (9)

where β is the weight adjustment parameter, ρ̂i is the activa-

tion value for the ith hidden layer unit and ρ is a small num-

ber. The sparsity penalty term constrains that the value of ρ̂i
should be near ρ under Kullback-Leibler divergence.

2.3. Stacking Robust Autoencoders to Build Deep Net-

works

The robust autoencoders are stacked into R-SAE for high

level feature learning. Stacking the robust autoencoders

works in the same way as stacking the ordinary autoencoders.

In the R-SAE model, each layer is trained separately with a

robust autoencoder.

3. EXPERIMENTAL RESULTS

In this section, experiments are carried out to compare the

feature learning performance of standard stacked autoencoder

(S-SAE) and R-SAE under noises. The experiments include

three parts: (1) we visualize the trained models to inspect the

feature learning effect; (2) we employ the classification ac-

curacy to evaluate the feature extraction performance; (3) we

use the reconstruction error to measure the denoising ability.
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3.1. Dataset

The experiments are carried out with the MNIST benchmark

dataset of ten classes of handwritten digits (from 0 to 9) [15].

The dataset includes a training set of 60000 samples and a test

set of 10000 samples. The gray scaled images of digits are in

size of 28× 28 and normalized to [0, 1].
In order to test the feature learning ability under out-

liers and non-Gaussian noise, we adopt a typical heavy-tailed

noise, i.e. Cauchy distributed noise, to corrupt the original

images. With the Cauchy noise, outlying data could appear

in abrupt large values. The Cauchy noise is centered at 0 and

scaled by S, with a bigger S indicating a higher degree of

noise.

3.2. Algorithm Settings

In our experiments, same stacked architectures are applied for

both S-SAE and R-SAE. For the S-SAE, the cost function is

defined as:

Jcost(θ) = JMSE(θ) + Jweight(θ) + Jsparse(θ), (10)

where the loss function JMSE(θ) is formulated with mean

square error:

JMSE(θ) =
1

m

m∑

i=1

(
1

2
‖yi − xi‖2), (11)

and Jweight(θ) and Jsparse(θ) are formulated the same as R-

SAE.

Three-layer stacked models are applied with 784 input

units, 200 hidden units and 200 output units. The parameters

are set as λ = 0.003, β = 3 and ρ = 0.1 for both methods and

σ = 0.2 for R-SAE. The networks are initialized randomly

and trained layer-wisely using back propagation to minimize

the cost functions.

3.3. Visualization

We first show the visualizations of the learned representations

from the input weights to inspect the feature learning perfor-

mance. The filters (bases) learned by S-SAE and R-SAE are

shown in Fig. 1. With the original images, both S-SAE and

R-SAE learn useful features as shown in Fig. 1 (a-b). The

filters learned by both methods are similar while sharper pat-

terns appear in R-SAE’s results. When the images contain

heavy-tailed noise, the traditional S-SAE can’t learn effec-

tively that no recognizable structure is shown in the learned

filters as in Fig. 1(c). That is because, the MSE-based recon-

struction loss could be dominated by large values caused by

outliers, therefore the S-SAE model couldn’t be well trained.

In contrast, the R-SAE method is more robust to outliers and

keep high learning performance. As shown in Fig. 1(d), pen-

stroke-like patterns are learned by R-SAE with data contain-

ing large amounts of outliers. Therefore, the proposed R-SAE

has better feature learning ability under non-Gaussian noises.

(a) (b)

(c) (d)

Fig. 1. Visualizations of subsets of filters learned with S-SAE

and R-SAE. (a) and (b) are filters learned from original im-

ages by S-SAE and R-SAE, respectively; (c) and (d) are fil-

ters learned from images with additive Cauchy noise of S =

0.03 by S-SAE and R-SAE, respectively.
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Fig. 2. Comparison of classification accuracy of R-SAE and

S-SAE under different scale parameter S for Cauchy dis-

tributed noise. As the noise becomes severer, the performance

of S-SAE decreases rapidly while more robust performance

shows with R-SAE.

3.4. Comparison of Classification Accuracy

In this experiment, we evaluate the extracted features by clas-

sification accuracy. Once the stacked models of S-SAE and

R-SAE are built and trained, the output from the highest layer

is used to train a stand-alone classifier and the classification

accuracy can be obtained on the test set. Here, we use the

multi-class softmax model for classification.

In order to eliminate the effects of randomness in network

initialization and noise generation, we present all results av-

eraged over 10 trials. The classification results are shown in

Table 1. With the original images, both S-SAE and R-SAE

show high performance of 0.92 and 0.96, respectively. When

the images are highly corrupted with heavy-tailed noise, R-

SAE outperforms S-SAE that the classification accuracies in-

crease by 5%-14%. In particular, as the noise gets severer, the
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Table 1. Results of classification accuracy with S-SAE and R-SAE.

Method Original S = 0.005 S = 0.010 S = 0.015 S = 0.020

S-SAE 0.92± 1 · 10−3 0.88± 4 · 10−3 0.84± 6 · 10−3 0.78± 5 · 10−3 0.69± 2 · 10−2

R-SAE 0.96± 2 · 10−3 0.93± 1 · 10−3 0.90± 3 · 10−3 0.86± 4 · 10−3 0.83± 6 · 10−3

Table 2. Results of mean square reconstruction error with S-SAE and R-SAE.

Method Original S = 0.005 S = 0.010 S = 0.015 S = 0.020

S-SAE 0.039± 8 · 10−5 0.043± 2 · 10−4 0.047± 5 · 10−4 0.052± 6 · 10−4 0.057± 1 · 10−3

R-SAE 0.010± 3 · 10−4 0.016± 4 · 10−4 0.023± 8 · 10−4 0.029± 1 · 10−3 0.035± 1 · 10−3

performance of S-SAE decreases rapidly to a low accuracy of

about 40% when S = 0.03; while the strength of R-SAE keeps

robust with highly noised images as shown in Fig. 2. Results

show that, the MCC-based reconstruction loss function im-

proves feature extraction ability of S-SAE under outliers.

3.5. Comparison of Reconstruction Error

In this experiment, we measure the denoising performance

under criterion of reconstruction error on the test set. The

reconstruction error is defined as the pixelwise mean square

error between the reconstructed images and original images

without noise:

Err =
1

MN

N∑

i=1

M∑

j=1

(xij − x̂ij)
2
, (12)

where xij and x̂ij are pixels from original images and recon-

structed images, respectively.

The results of reconstruction error are also averaged over

10 trails for randomness elimination. As shown in Table 2,

with the original images, low reconstruction error of 0.010 is

achieved with R-SAE which outperforms 0.039 obtained with

S-SAE. Moreover, with the noises added, the reconstruction

errors obtained by R-SAE are 39%-63% lower than results

of S-SAE, which indicates strong denoising ability of R-SAE

under large amounts of outliers.

Examples of reconstructions from noised images are illus-

trated in Fig. 3. The reconstructed images with R-SAE pre-

serve clear features of digits with the noises removed. How-

ever, with the S-SAE, the reconstructions are noised with blur

and even with errors (such as the 2nd and 5th digits). The pro-

posed R-SAE model provides more robust reconstruction and

denoising performance under noises compared with S-SAE.

4. CONCLUSION

In this paper, we modified the traditional stacked autoen-

coders using maximum correntropy criterion. Taking advan-

tage of outlier immunity of correntropy, the modified R-SAE

(a) Original images

R
-S

A
E

S-
SA

E

(c) Reconstructed Images

(b) Noised Images

Fig. 3. Comparison of image reconstruction performance of

R-SAE and S-SAE. (a) Images from test set; (b) images cor-

rupted by Cauchy noise with S = 0.01, note that the outliers

out of range of [0, 1] are manually set to 0 and 1 for plotting;

(c) reconstructed images with R-SAE and S-SAE.

model obtains high feature learning performance under large

amounts of outliers where the traditional S-SAE would fail.

The proposed R-SAE is capable of dealing with non-Gaussian

noises and outliers so that it is promising to provide robust

unsupervised feature learning in practice.
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