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ABSTRACT
Inter-channel phase (IPD) and level (ILD) differences are common
features in multichannel source separation algorithms like DUET
and MENUET. However, their utility depends strongly on the config-
uration of the array and what microphone pairs are used to calculate
them. IPDs are most useful when extracted from microphones that
are close together as this avoids spatial aliasing. In contrast, ILD
clusters are only well separated for widely spaced microphones. We
investigate this trade-off between IPD and ILD features and propose
a method to best combine them for multichannel source separation.
Experimental results demonstrate the utility of this approach.

Index Terms— source separation, circular statistics, RANSAC

1. INTRODUCTION

Inter-channel phase (IPD) and level (ILD) differences have been
used in source separation algorithms such as the Degenerate Unmix-
ing Estimation Technique (DUET) [1] and its successor, Multiple
sENsor dUET (MENUET) [2]. Joint IPD-ILD features form clusters
corresponding to the directional sources in an audio mixture. Thus,
the sources can be separated by applying the k-means algorithm (for
example) to the set of extracted features and using the cluster labels
to generate a binary mask for each source.

This approach works remarkably well in anechoic conditions for
compact arrays thanks to the disjointness of speech signals in the
time-frequency plane. However, it breaks down in real-world con-
ditions due to reverberation and spatial aliasing. The goal of this
paper is to develop a method for combining IPD and ILD features
that maximizes separation performance in a more general, non-ideal
setting.

In anechoic conditions, IPD features that correspond to a di-
rectional source are a linear function of frequency. However, if
the microphones are further apart than a critical distance, spatial
aliasing occurs. This causes the linear IPD function to wrap in
[−π, π]. Aliasing has been addressed, for example, by modeling the
features with directional probability densities such as the wrapped
Gaussian [3], wrapped Laplacian [4], and von Mises [5], [6], [7] dis-
tributions.

In this paper, we discuss the impact of microphone spacing on
the utility of both inter-channel features. In particular, we note that
IPDs are most useful for separation when the microphones are rel-
atively close together (e.g. < 10 cm). In this regime, IPDs form
wrapped lines that can be identified even in reverberant, noisy con-
ditions. However, ILDs are difficult to cluster because there is typi-
cally little difference in the signal amplitude between the channels.
ILDs are most effective for separation purposes when the micro-
phones are far apart (e.g. > 30 cm) [8]. But in this regime, IPDs will

suffer from severe spatial aliasing. Thus, there is a crucial tradeoff
in these features that depends on the configuration of the array.

It is interesting to note that this same trade-off is observed with
binaural localization cues in human hearing [9, Chapter 13]. At
lower frequencies, i.e. < 1 kHz, phase cues are most useful, at
higher frequencies, attenuation cues are most useful, and in the in-
termediate regime, both are effective. This makes sense when we
observe that the distance between a human’s ears is roughly equal
to half the wavelength of a 1 kHz sinusoid. Above this frequency,
spatial aliasing takes its tole on phase cues and we must rely on at-
tenuation cues instead.

In [7], the authors proposed an efficient method for cluster-
ing wrapped IPD features using the Random Sample Consensus
(RANSAC) [10] algorithm. This approach reduced the problem of
fitting multiple wrapped lines to IPD data to a simple sample-and-
count procedure. We extend this approach to use both IPD and ILD
features in combination with an arbitrary stereo microphone array.

2. INTER-CHANNEL FEATURES

In this section, we define inter-channel phase and level difference
features as a function of the room impulse responses from a point
source to a pair of microphones. We then discuss the impact of the
array configuration on the utility of these features for blind separa-
tion. Finally, we introduce a probabilistic model for IPDs and ILDs.

2.1. Phase and level differences

Acoustic signals are recorded at either of two microphones. After
applying the short-time Fourier transform (STFT) with window size
2D, we have complex-valued matrices X(i), i = 1, 2. The DFT co-
efficient at time frame t and frequency f is denoted asX(i)

f,t. We will
retain only the first D coefficients in any frame because the second
half contains the same information. The element-wise log-ratio of
the STFT matrices provides us with complex-valued inter-channel
features for all time-frequency pairs of the form:

Ff,t = log

(
X

(1)
f,t

X
(2)
f,t

)
. (1)

Phase differences can be defined as:

δf,t = − Im (Ff,t) = ∠X(2)
f,t − ∠X(1)

f,t , (2)

and level differences can be defined as:

αf,t = Re (Ff,t) = log
(∣∣X(1)

f,t

∣∣)− log
(∣∣X(2)

f,t

∣∣) . (3)
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Fig. 1. Array configurations most amenable to either inter-channel
feature. The microphones in the red (circle) and blue (triangle) ar-
rays are separated by 5 and 50 cm, respectively.

One can show that, under anechoic conditions, the IPD and ILD
features for a point source take the form:

δf,t = ψ (ω (d1 − d2)) , ω =
πf

D
, (4)

αf,t = log (a1)− log (a2) , (5)

where ω is radian frequency, ai and di are the attenuation and time
delay due to propagation from the source to the ith microphone, the
wrapping function ψ : R→ S is defined as:

ψ (x) = mod (x+ π, 2π)− π , (6)

and S = {θ : θ ∈ [−π, π]}.
We can see that inter-channel features are a function only of the

room impulse responses from the source to the microphones. Thus,
they depend on the physical configurations of the sources and of the
array.

2.2. Impact of array configuration

It is worthwhile to carefully study the form of the features in (4)-
(5). Fig. 1 depicts two stereo array configurations of interest along
with two source positions. If the microphones are spaced far apart
(blue triangles in Fig. 1), signals arriving along the axis of the array
will induce a long delay d1−d2 between the channels. This, in turn,
gives rise to severely-wrapped IPD features. However, the difference
in the log attenuations is sufficient to provide salient ILD features.
IPDs and ILDs for this array configuration are shown in blue in the
top panel of Fig. 2.

If the microphones are closely spaced (red circles in Fig. 1), IPD
features are more useful as spatial aliasing has a limited effect. Un-
fortunately, the difference in attenuations log (a1)− log (a2) is neg-
ligible, rendering ILD features mostly indistinguishable for either
source. This is depicted in red in the bottom panel of Fig. 2.

Thus, there is a trade-off between the two features that must be
taken into account when using DUET-style source separation algo-
rithms with any given array. If 3 channels are available, we might
place two close together and a third at a distance. This would make
it possible to extract salient IPD features from the close pair and ILD
features from one of these and the third microphone. However, this
is a more expensive and constraining solution than the common 2-
channel arrangement found, for example, in smartphones. In this

Fig. 2. IPD and ILD features associated with the arrays in Fig. 1.
(Top row) ILD-friendly array. (Bottom row) IPD-friendly array.

paper, we will focus on how best to combine the features for a 2-
microphone array.

2.3. Probabilistic model for IPDs and ILDs

When K > 1 speakers are active simultaneously, the features will
form clusters corresponding to each one. This is due to the near-
disjointness of speech in the STFT domain:

∀ f, t
K∏
k=1

S
(k)
f,t ≈ 0 , (7)

where S(k) is the STFT matrix of the kth speech signal. Time-
frequency overlap between sources, reverberation, and other inter-
ferences tend to smear the data and introduce outliers. This has the
effect of broadening the clusters and increasing their overlap. To
robustly perform clustering, we model either feature with an appro-
priate probability density.

We will model the IPDs, conditioned on the kth source, with the
von Mises (vM) [11] distribution:

vM (δf,t ; hk, κ) =
1

2πI0 (κ)
eκ cos(δf,t−hkf) , (8)

where hk is the IPD line slope for the kth source, κ is a concentration
parameter, and I0 (κ) is the 0th-order modified Bessel function of
the first kind. The conditional distribution of the ILDs is modeled as
Gaussian:

N
(
αf,t ; µk, σ

2) = 1√
2πσ2

e
−
(αf,t−µk)

2

2σ2 , (9)
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where µk is the mean for the kth source and σ2 depends on the spread
of the ILD features.

3. CLUSTERING ALGORITHM

Let Y denote a dataset of N joint IPD-ILD features Yn =
{δn, αn}, n = 1, . . . , N , extracted from a pair of microphones.
To cluster these features, we define a likelihood function over the
data set:

L
(
Y ; h,µ, κ, σ2) =

N∏
n=1

K∏
k=1

[
vM (δn ; hk, κ)N

(
αn ; µk, σ

2)][zn=k] , (10)

where [−] denotes the indicator operator and zn is the class label for
the nth time-frequency bin. Thus, we wish to maximize (10) with
respect to the parameters:

̂{h,µ, κ, σ2} = argmax
h,µ,κ,σ2

L
(
Y ; h,µ, κ, σ2) . (11)

However, because the labels zn are unknown and the IPD fea-
tures form wrapped lines, this optimization is non-trivial. Instead
of using an optimization routine that is susceptible to local optima,
we will find the parameters with a variant of the RANdom SAmple
Consensus (RANSAC) algorithm.

3.1. RANSAC

A RANSAC [10] algorithm was proposed in [7] for fitting a set of
wrapped lines to an IPD dataset. We adapt it to the case of joint
inter-channel features.

The RANSAC procedure to fit a single model is as follows. First,
a set of M “samples” are selected uniformly at random from the
dataset where each sample consists of the minimum number m of
data points required to fit the model. For example, in the case of a
line passing through the origin, a single point is required (i.e. m =
1). Each sample thus provides a candidate model. Inliers are counted
for each candidate and the model with the highest count is chosen.

If the proportion of the dataset that consists of inliers is w, one
can show that the expected number of RANSAC samples required to
get a single inlier is w−m. Typically, this is multiplied by a constant
to ensure that a good model is fit (e.g. M = 5 dw−me).

When K > 1 models are to be fit simultaneously, we can
choose candidates in an iterative fashion. Alternatively, we may
select K candidates in each RANSAC sample as proposed in the
multiRANSAC algorithm [12]. We found that the latter strategy
yielded superior results for joint IPD-ILD clustering.

We must define distance measures and thresholds to count in-
liers. To reflect the formulation in (10), we could choose the mea-
sures to be cosine and Euclidean distances and the thresholds to be
τδ =

√
1/κ and τα = σ for the IPD and ILD features, respectively.

We can now simply maximize an inlier count rather than (11). This
works well in practice due to its efficiency and robustness to outliers.

3.2. Choice of thresholds

Due to the trade-off between IPD and ILD features discussed in Sec-
tion 2.2, the choice of thresholds τδ and τα is crucial. When the mi-
crophones are far apart, we should set τδ to a large value and τα to a
reasonably small value. This has the effect of ignoring the relatively
uninformative IPD features. In contrast, when the microphones are
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Fig. 3. Signal-to-Distortion Ratio averaged over 100 trials for
closely- and widely-spaced microphone arrays.

close together, IPD features are more informative, and we should set
the thresholds in the opposite manner.

We evaluated the Signal-to-Distortion Ratio (SDR) [13] over
many pairs of thresholds to investigate what values would be best.
The set-up for these experiments is as described in Section 5 and the
results are shown in Fig. 3 with surface plots. The trade-off between
the two features is evident. To ensure that our algorithm is robust
to many possible array configurations, we randomly sample an inlier
bound pair for each RANSAC sample. We found that, in practice,
these can be selected uniformly at random from the union of two
rectangular regions in τδ-τα space:

(τδ, τα) =

{
(π
3
, 1.5) < (τδ, τα) < (π

2
, 4.5) ,

( π
16
, 15) < (τδ, τα) < (π

8
, 20).

(12)

To prevent trivial solutions where a chosen pair of inlier bounds
includes too many data points (e.g. ILD features are very similar for
both sources but a wide inlier bound is chosen), we discard candi-
dates with too many inliers. In practice, we found that candidates
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that register more than 70% of the data as inliers should be ignored.

4. SOURCE SEPARATION

To perform source separation, we first estimate the model parame-
ters h and µ. This is done with the sequential RANSAC procedure
described in Section 3. Once the models are fit, we evaluate the pos-
terior probabilities that each time-frequency data point belongs to
each source. In accordance with (10), this is calculated as:

ηnk =
vM

(
δn ; ĥk, κ̂

)
N
(
αn ; µ̂k, σ̂

2
)

K∑
j=1

vM
(
δn ; ĥj , κ̂

)
N (αn ; µ̂j , σ̂2)

, (13)

where the spread parameters κ̂ and σ̂2 are determined by the opti-
mal choice of inlier bounds from the simultaneous RANSAC results.
Thus, we have κ̂ = τ−2

δ and σ̂2 = τ2α. The ηnk’s define soft time-
frequency masks. To recover the kth source, the mask with compo-
nents ηk is multiplied element-wise with the mixture STFT from the
first channel and the overlap-add algorithm is applied to reconstruct
the time-domain waveform.

5. EXPERIMENTS

We evaluated the performance of our approach in a simulated rever-
berant room using the image method [14]. The room was of size 5×5
meters and the simulator was set up so that the T60 time was roughly
20 milliseconds.1 The array was oriented horizontally and placed in
the center of the room and the sources were located on the unit circle
centered at the array. We conducted 100 trials in which two 2-3-
second sentences were chosen at random from the TSP corpus [15]
and mixed. The speakers were positioned in the middle of the room,
separated by 2 meters, and the sensors were placed in-between the
speakers with varying distances from 1 to 40 centimeters.

The sources were separated using masks derived via three meth-
ods: IPD only, ILD only, and IPD-ILD fusion (proposed). The IPD-
and ILD-only model parameters were estimated as in the proposed
method but using only one of the two features. Likewise, time-
frequency masks were estimated using just the corresponding fea-
ture. 100 RANSAC samples were chosen for each trial.

The results from these experiments are summarized in Fig. 4.
We can see that the proposed method is more robust to variability in
the array configuration than either of the independent-feature meth-
ods. The trade-off discussed in Section 2.2 between IPD and ILD
features as a function of microphone separation is also evident.

6. CONCLUSION

We have shown that there is a crucial trade-off between inter-channel
level (ILD) and phase (IPD) difference features for audio source sep-
aration with a microphone array. When the microphones are closely
spaced, IPDs provide more salient cues for distinguishing between
the speakers. However, when the microphones are far apart, the op-
posite holds. When the array configuration is unknown or varying
over time, separation quality may suffer from this trade-off. The
proposed method uses a random sampling approach to leverage the
strengths of both feature types over all array configurations.

1The T60 time of a room is how long it takes for the power of the room
impulse response to drop by 60 dB.
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Fig. 4. Signal-to-Distortion, Signal-to-Interference, and Signal-to-
Artifact Ratios for source separation experiments with three feature
types.
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