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ABSTRACT

We consider the problem of extracting the source signals from an
under-determined convolutive mixture, assuming known filters. We
start from its formulation as a minimization of a convex functional,
combining a classical `2 discrepancy term between the observed
mixture and the one reconstructed from the estimated sources, and a
sparse regularization term of source coefficients in a time-frequency
domain. We then introduce a first kind of structure, using a hybrid
model. Finally, we embed the previously introduced Windowed-
Group-Lasso operator into the iterative thresholding/shrinkage al-
gorithm, in order to take into account some structures inside each
layers of time-frequency representations. Intensive numerical stud-
ies confirm the benefits of such an approach.

Index Terms— structured sparsity; audio source separation;
convolutive mixture

1. INTRODUCTION

In many situations, such as a concert for music or the so called
cocktail party problem for speech, the recorded sound signals are
issued from mixtures of several sound sources. In this article, we
consider the reverberant under-determined setting. The difficulty is
then twofold: the number of sources is larger than the number of
mixture channels, and the reverberation is modeled as a convolution.
We focus on the estimation of the source signals assuming that the
mixing filters are known. The blind separation problem in that case
is still a challenging open problem [1].

In the under-setting case, source separation problem can be
adressed using time-frequency masking techniques (see [2] and ref-
erences therein for example). Moreover, in order to deal with the
convolution, the short time frequency transform (STFT), or Gabor
transform, allows to approximate the convolution by several in-
stantaneous mixture, depending on the frequency band. In [3], the
considered inverse problem is formulated as a convex optimization
problem, where a wideband `2 mixture fitting cost is used directly
in the time domain, in addition of a `1 source sparsity cost in the
time-frequency domain. Such an idea has been exploited using a
analsys prior in [4], which confirms the benefit of such an approach
on various type of audio mixture, over the classical time-frequency
masking.

This article provides three contributions. Firstly, motivated
by the research about hybrid model for signal [5], also known as
Morphological Component Analysis [6], we investigate the use
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of the union of two Gabor frames, each adapted to the “morpho-
logical layer”, for the signal time-frequency representation in the
problem of source separation. Secondly, we link the Windowed-
Group-Lasso [7] to the problem of source separation to obtain a
more reliable sparse representation. Windowed group-Lasso is a
convenient way to take into account some neighborhood informa-
tion for a structured sparse approximation. It is the first time, to
our knowledge, that the structured sparsity is used in the problem
of convolutive source separation. Finally, we compare the proposed
methods with the state-of-the-art method and we thereby conclude
the favorable conditions for speech and music sources.

The rest of the article is organized as follows. Next section 2
introduces the notation, the mathematical models and proposed al-
gorithms. Section 3 presents all the experiments done on various
speech and music mixtures, in order to show the benefit of both hy-
brid model and structured sparsity. The last section 4 concludes the
paper.

2. MATHEMATICAL MODEL AND ALGORITHMS

After the introduction of the general mixture model, this section
presents the wideband convex problem under consideration with the
hybrid model. Then, the structured shrinkage operators are pre-
sented, as well as the practical algorithms for source separation.

We consider the source separation problem for convolutive mix-
tures of the form

xm(t) =

N∑
n=1

Amn ? sn(t) + em(t) , (1)

with N source signals sn of duration T and M (M < N ) micro-
phones, yielding M mixture channels xm, ? denotes the convolu-
tion. The effect of acoustic propagation between the sources and the
microphones is modeled by a set of mixing filters Amn(t) of length
P . Denoting by x ∈ RM×T and s ∈ RN×T the matrices of mixture
channels and source signals and by A ∈ RM×N×P the three-way
array of mixing filters, the mixing process (1) can be rewritten more
concisely in matrix form as

x = A ? s + e , (2)

where e ∈ RM×T models the background noise. Since M < N , A
is not invertible, hence the need for suitable approaches to estimate
s given x and A.

Let us denote by Φ ∈ CT×B the matrix representing an energy-
preserving STFT operator (or Parseval Gabor frame), the sources s
can be resynthesized from their estimated STFT coefficients α ∈
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CN×B by
s = αΦ∗ (3)

where Φ∗ ∈ CB×T is the adjoint operator of Φ, that is its Hermitian
transpose.

2.1. Wideband Hybrid Lasso

One possible assumption is that the signals are sparse in the time-
frequency domain [8, 9]. Under this assumption, we can recast the
source separation problem into a convex optimization framework.
This assumption relies on the following functional [3]

min
α∈CN×B

1

2
‖x−A ?αΦ∗‖22 + λ‖α‖1 (4)

In [5] for audio, and in [6] for images, hybrid model or morpho-
logical component analysis suppose that a signal can be expressed
as the sum of two layers: a tonal one and a transient. The underlying
assumption can be expressed as the expectation that each class of
components has a sparse decomposition within one, of the frames in
the union. Then, a complementary approach to the model described
in (4) is to consider a union of two frames or bases, each adapted to
the “morphological layer”. The hybrid model is given as follow:

s = ston + strans = αtonΦton + αtransΦtrans

where Φton ∈ CT×Bton is a Gabor frame adapted for the tonal
layer, and Φtrans ∈ CT×Btrans adapted for the transient. The
reader can refer to [10] for a more theoretical study of hybrid de-
compositions.

Given the model above, a natural way of circumventing the
wideband Lasso (4) is to replace the decomposition using one Gabor
frame by a decomposition using two Gabor frames

min
(αton,αtrans)

1

2
‖x−A ? (αtonΦ∗ton + αtransΦ

∗
trans)‖22

+λ (µ‖αton‖1 + (1− µ)‖αtrans‖1)

(5)

where λ > 0 is an hyperparameter balancing the data term and the
regularizer, and 0 ≤ µ ≤ 1 is a hyperparameter balancing between
the tonal and the transient layers.

Minimization of convex functions like (5) relies on the so-called
proximity operator of convex penalties. The proximity operators
typically lead to shrinkage/thresholding operator known as the soft-
thresholding for the `1 norm.

Denoting αtf the coefficient in each time-frequency bin, the
soft-thresholding operator reads

α̃tf = Sλ(αtf ) = αtf

(
1− λ

|αtf |

)+

(6)

Then, one can minimize (5) thanks to Iterative Shrinkage/Thresholding
Algorithm (ISTA). We provide the general form of its acceler-
ated version (FISTA) [11] in Algorithm 1, where the data term
L(α) = 1

2
‖x−A ? (αtonΦ∗ton +αtransΦ

∗
trans)‖22 is L-Lipschitz

differentiable with gradient

∇Lton(α) = [A∗ ? (x−A ? (αtonΦ∗ton + αtransΦ
∗
trans))]Φton

(7)

∇Ltrans(α) = [A∗?(x−A?(αtonΦ∗ton+αtransΦ
∗
trans))]Φtrans

(8)

Algorithm 1: FISTA for solving (5)

Initialization: α(0)
ton ∈ CN×Bton , α(0)

trans ∈ CN×Btrans ,
z
(0)
ton = α

(0)
ton, z

(0)
trans = α

(0)
trans, τ

(0) = 1, k = 1.
repeat

α
(k)
ton = Sλ/L

(
z
(k−1)
ton − ∇Lton(z

(k−1)
ton ,z

(k−1)
trans)

L

)
;

α
(k)
trans = Sλ/L

(
z
(k−1)
trans −

∇Ltrans(z
(k−1)
ton ,z

(k−1)
trans)

L

)
;

τ (k) = 1+
√

1+4τ(k−1)2

2
;

z
(k)
ton = α

(k)
ton + τ(k−1)−1

τ(k) (α
(k)
ton −α

(k−1)
ton );

z
(k)
trans = α

(k)
trans + τ(k−1)−1

τ(k) (α
(k)
trans −α

(k−1)
trans );

k = k + 1
until convergence;

where the adjoint A∗ of A is obtained by transposition of source
and channel indexed and time reversal of the filters.

Introducing the linear operator T : CN×(Bton+Btrans) →
RM×T defined by

T (α) = T (αton,αtrans) = A ? (αtonΦ∗ton + αtransΦ
∗
trans)

(9)
and T ∗ its adjoint, the Lipschitz constant L is given by

L = ||T ∗T ||2op (10)

with ||.||2op denoting the operator norm. It can be well approximated
thanks to a classical power iteration algorithm.

2.2. Structured shrinkage operator

When one looks at the time-frequency analysis coefficients of an au-
dio signal, one can notice that there is a grouping effect of the coef-
ficients in both time and frequency-direction. Then, one of the main
limitations of the Lasso estimate is that all the coefficients are treated
independently. However, the use of a group-Lasso penalty [12] is
not directly possible on the time-frequency coefficients. Indeed, one
cannot define independent groups as a prior. To avoid this, some au-
thors have studied various kinds of Group-Lasso with overlap, such
as in [13, 14]. However, the main practical limitations of such ap-
proaches is the computational cost. The strategy chosen here in or-
der to obtain a more reliable sparse representation, is the use of new
thresholding operators as the Windowed-Group-Lasso (WG-Lasso).
Windowed-Group-Lasso was first defined in [15] and was deeper
studied in [7]. The idea is to use the neighborhood information of a
given coefficient inside the shrinkage operators, in order to exploit
the time-frequency persistence properties. Using this neighborhood
structure, WG-Lasso is defined by the following operator, for each
time-frequency index (t, f):

α̃tf = SWGL
λ (αtf ) = αtf

1− λ√∑
t′,f ′∈N (t,f) |αt′f ′ |2

+

(11)
where N (t, f) denotes the time-frequency neighborhood of the
time-frequency index (t, f). The idea of this shrinkage operator is
to select a coefficient if the energy of its neighborhood is sufficiently
large. Consequently, an isolated ”big” coefficient can be discarded,
but a ”small” coefficient in the middle of big ones can be kept.
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In the case of two Gabor frames, as the transform adapted for the
tonal part is well localized in frequency and the transform adapted
for the transient part is well localized in time, the structures in the
time-frequency plan for the tonal part and the transient part seem
different. Empirically, we choose the neighborhood extending in
time for the tonal layer and the neighborhood extending in frequency
for the transient layer.

3. EXPERIMENTS

After the presentation of the experimental setup, we describe in this
section the influences of various choices for the parameters, as the
size of the Gabor windows, the size of the neighborhood, and the
benefit of the hybrid model.

3.1. Experimental setup

For all the experiments, the signals were sampled at 11 kHz, and
the mixing filters were room impulse responses simulated via the
image technique [16] using the Roomsim software [17]. The number
of microphones and the number of sources were respectively set to
2 and 4. We provide results for the following configuration: the
microphone spacing was set to d = 1m and the reveberation time
was RT60 = 250ms for ten different sets of male and/or female
speech sources from various nationalities and ten different sets of
music sources (including singing voice and various instruments).

In all the experiments, the STFT was computed with half-
overlapping tight windows using the ltfat toolbox[18]. The center of
neighborhoods is always the considered sample for the windowed
group-Lasso. In order to only evaluate the different methods in
the light of the source separation efficiency, we did not add any
simulated noise. In order to avoid complex evaluation of the hyper-
parameters λ and µ in (5), we choose the most “natural” setting, i.e.
λ → 01 in order to obtain a perfect reconstruction of the mixture
(and then, do not performing any denoising) and µ = 0.5 in order
to not favor a specific layer. One can surely improve the results by
playing with these hyperparameters, but the price is a very expensive
computational cost.

The separation performance was assessed using the now popu-
lar Signal to Distorsion Ratio (SDR) and Signal to Interference Ratio
(SIR) [19]. The SDR indicates the overall quality of each estimated
source compared to the target, while the SIR reveals the amount of
residual crosstalk from the other sources. A larger value of SDR/SIR
means a better quality of the separation. These measures were sub-
sequently averages over all sources for each mixing condition. The
wideband Lasso method was performed as a baseline.

One can listen some sound examples, for both speech and music
demixing, on the webpage http://webpages.lss.supelec.fr/
perso/matthieu.kowalski/FK_icassp14/FK_icassp.html.

3.2. Mono layer model

We first illustrate the benefit of structured sparsity over the simple
wideband Lasso, i.e. in the case where only one Gabor dictionary
is used. Then, it remains mainly two parameters to influence the
quality of the separation: the size of the Gabor window and the size
of the neighborhood.

The results are summarized in Figures 1 and 2, where the vari-
ations of the SDR and SIR are plotted as a function of the size of
the neighborhood, for various size for the window. We recall that if

1λ → 0 is not equivalent to set λ = 0, as one cannot invert the limit and
the maximum operator.

the size of the neighborhood is 1, then WG-Lasso becomes Lasso.
Notice that the SDR of the Lasso for the speech sources is maximum
(7.9dB) when the Gabor window is 512 samples and the maximum
(8.6dB) of the WG-Lasso is achieved with the same window length
when the size of the neighborhood is 3. For the music sources, the
maximum SDR (6.1dB) of Lasso method is achieved when the win-
dow is 1024 samples and the maximum (6.7dB) of WG-Lasso is
reached with a window of 512 samples. However, the difference be-
tween the performance (SDR and SIR) of WG-Lasso with the win-
dow of 512 samples and 1024 samples is not significant. It is noticed
that the algorithm is relatively robust with respect to the choice of the
neighborhood: there is a significant increase in performance from
the Lasso to WG-Lasso with the neighborhood of 3, but further en-
larging the neighborhood does not improve the performance which
suggests a quite robust choice. One of the most interesting thing, is
that the same remarks apply for the SIR which is also improved.
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Fig. 1. Different size of neighborhood for WG-Lasso with speech
source

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

11

The size of the neighborhood

S
D

R
/S

IR
(d

B
)

 

 

SDR win=256
SDR win=512
SDR win=1024
SIR win=256
SIR win=512
SIR win=1024

Fig. 2. Different size of neighborhood for WG-Lasso with music
source

In conlusion, in the case of one Gabor frame, the best perfor-
mance is realised when the Gabor window is 512 and the size of
neighborhood is 3 for both speech and music mixtures.

3.3. Hybrid model

We present here the results for the hybrid model. In this case, the
choices for the parameters are more tricky: one can play on the size
of the windows for the two layers, as well as for the size of the neigh-
borhood.
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3.3.1. Size of Gabor windows for Lasso with two Gabor frames

We first evaluate the performances without structured sparsity. In
that case, the size of the Gabor window varies from 28 to 211 for
the tonal part and 25 to 28 for the transient layer. Table 1 and 2
illustrate the variation of the SDR and SIR. As shown in the tables,
the best condition for the speech sources is a window of length 512
for tonal and 32 for transients; and for the music sources a window
of length 2048 for tonal and 256 for transient. Besides, it is noticed
that it is relatively robust with respect to the choice of the window
for the transient part for both types of source. For the speech source,
the trends observed when considering the choice of the window for
tonal part is similar to the trends when one Gabor frame is used, but
similar trends do not appear for the music source.

However, the use of hybrid model with the chosen specific
choice for the hyperparameters, does not improve the quality of the
separation compared to the single layer model: if the SDR is slightly
improved by 0.1 to 0.2 dB, the SIR is degraded about 0.5 dB.

Table 1. SDR/SIR OF DIFFERENT SIZE OF WINDOWS FOR
THE SPEECH SOURCES

Size of window for tonal part
256 512 1024 2048

Size of
window for

transient part

32 6.5/11.9 8.0/13.9 7.7/13.5 6.3/12.0
64 6.2/11.7 7.8/13.7 7.5/13.3 6.2/11.8
128 6.0/11.4 7.7/13.6 7.4/12.3 6.2/12.0
256 6.3/12.2 7.7/13.7 7.8/13.9 7.1/13.1

Table 2. SDR/SIR OF DIFFERENT SIZE OF WINDOWS FOR
THE MUSIC SOURCES

Size of window for tonal part
256 512 1024 2048

Size of
window for

transient part

32 4.6/8.0 5.3/8.5 5.8/8.9 5.9/8.9
64 4.6/8.0 5.4/8.6 5.9/9.1 6.0/9.1
128 4.9/8.2 5.4/8.7 6.0/9.2 6.2/9.3
256 5.1/9.0 5.4/8.7 6.0/9.3 6.2/9.3

3.3.2. Size of neighborhoods for WG-Lasso in the case of two Gabor
frames

In the case of two Gabor frames, we first set the size of the Gabor
window for the tonal layer to 512 samples and 32 for the transient
layer for the speech sources. The size of the neighborhoods for both
layers varies from 1 to 9. The performance is shown in the upper
tabular of Table 3. The best performance is reached when the neigh-
borhood is 3 for the tonal layer and 5 for the transient. Moreover, it
can be seen that, besides improving the SDR and SIR, the algorithm
is also robust with respect to the choice of the neighborhoods when
the neighborhoods are between 3 and 5.

The performances were also evaluated for a window of length
256 sample for the tonal layer, still with a window of 32 samples
for the transient layer. As shown in the second tabular of Table 3, al-
thought the maximum is achieved when the neighborhoods are (5,9),
similar trends as in the previous setting can be observed. For the mu-
sic sources, we set the sizes of the Gabor windows to (2048,256) and
(512,32) respectively. The performances are illustrated in Table 4.

In conlusion, the best performance for speech source in the
case of two Gabor frames is achieved when the Gabor windows are
(512,32), and (2048,256) for the music source. The neighborhoods
between 3 and 5 seem to be favorable for both.

We can summarized all these results in Table 5, which shows the
variation of SDR/SIR for both Lasso and WG-Lasso in the case of

Table 3. SDR/SIR OF DIFFERENT SIZE OF NEIGHBORHOOD
FOR THE SPEECH SOURCE

Speech, windows 512-32 Size of neighborhood for tonal part
1 3 5 9

Size of
neighborhood for

transient part

1 8.0/13.9 8.4/14.0 7.7/13.1 6.7/11.9
3 8.2/14.2 9.0/14.7 8.4/13.9 7.7/12.8
5 8.2/14.2 9.0/14.8 8.5/14.0 7.8/12.9
9 8.1/14.2 9.0/14.8 8.4/13.9 7.7/12.8

Speech, windows 256-32 Size of neighborhood for tonal part
1 3 5 9

Size of
neighborhood for

transient part

1 6.5/11.9 7.9/13.2 7.7/13.0 7.0/12.2
3 6.7/12.2 8.6/14.0 8.6/13.9 7.8/12.8
5 6.6/12.2 8.8/14.2 8.8/14.0 8.3/13.3
9 6.6/12.2 8.7/14.1 9.1/14.5 8.4/13.4

Table 4. SDR/SIR OF DIFFERENT SIZE OF NEIGHBORHOOD
FOR THE MUSIC SOURCE

Music, window 2048-256 Size of neighborhood for tonal part
1 3 5 9

Size of
neighborhood for

transient part

1 6.2/9.3 6.7/9.6 6.7/9.5 6.5/9.3
3 6.4/9.5 7.1/9.9 7.2/10.0 7.1/9.8
5 6.3/9.4 7.0/9.9 7.1/9.9 7.1/9.7
9 6.1/9.3 6.8/9.7 7.0/9.7 7.0/9.6

Music, window 512-32 Size of neighborhood for tonal part
1 3 5 9

Size of
neighborhood for

transient part

1 5.3/8.5 5.9/8.9 6.0/8.8 5.9/8.6
3 5.4/8.7 6.3/9.3 6.4/9.3 6.4/9.1
5 5.5/8.8 6.4/9.4 6.6/9.4 6.6/9.2
9 5.4/8.7 6.4/9.4 6.6/9.3 6.6/9.1

two Gabor frames and one Gabor frame. One can remark that the
two Gabor frames outperforms the method of one Gabor for both
Lasso and WG-Lasso. It is interesting that the performances are
improved by more than 1 dB on SDR without degrading the SIR for
both speech and music, thanks to the structured hybrid model for
speech sources.

Table 5. SDR/SIR: Two Gabors vs One Gabor
Lasso Lasso WG-Lasso WG-Lasso

+1Gabor +2Gabors +1Gabor +2Gabors
Speech 7.9/14.3 8.0/13.9 8.6/14.6 9.1/14.5
Music 6.0/9.9 6.2/9.3 6.7/10.0 7.2/10.0

4. CONCLUSION

In this paper we developed several iterative algorithms to separate
convolutive mixtures using sparse source models in a time-frequency
dictionary, when the mixing filter system is supposed to be known.
We showed that these approaches give interesting results compared
to wideband Lasso by improving SDR, with a stable SIR. We only
displayed the results for the specific setting RT60 = 250ms for a
distance between the two micro of 1 m, as it is the most favorable
case for the wideband Lasso [3]. However, we also run experiments
on the setting RT60 = 50ms, and we have observed very similar
behavior, for the same magnitude of improvement on SDR, but also
a similar improvement on the SIR.

The next step should be to consider the problem of blind source
separation for underdetermined convolutive mixture, but the study
performed in [1] suggests a very difficult and challenging problem.
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