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ABSTRACT

This paper describes a novel technique for promoting
sparsity in the modified filtered-x algorithms required for ac-
tive noise control. The proposed algorithms are based on re-
cent techniques incorporating approximations to the £y-norm
in the cost functions that are used to derive adaptive filter-
ing algorithms. In particular, zero-attracting and reweighted
zero-attracting filtered-x adaptive algorithms are developed
and considered for active noise control problems. The results
of simulations indicate that the proposed techniques improve
the convergence of the existing modified algorithm in the case
where the primary and secondary paths exhibit a degree of
sparsity.

Index Terms— Active noise control, adaptive algorithms,
sparsity-aware techniques.

1. INTRODUCTION

Active noise control (ANC) is a popular technique for remov-
ing noise from a system by using a variant of the system iden-
tification scenario to subtract the effect of a noise-generating
plant from a signal [1]. ANC algorithms are based on classical
adaptive algorithms, with provision made for the additional
electroacoustic path between the filter output and measured
error signal, known as the secondary path [2]. A common
technique to account for this path is known as the filtered-
x (FX) scheme, originally developed for least-mean square
(LMS) algorithms in the context of adaptive control [3] and
since developed for other classical algorithms [4, 5, 6].

The FX scheme eliminates potential algorithm instability
caused by the additional delay in the secondary path [7], but
is marred by slow convergence [8]. The modified filtered-x
(MFX) scheme was introduced in [9], and improves upon the
convergence of the FX algorithms by introducing additional
steps to approximate the error signal. MFX schemes have
since become a popular choice for ANC architectures. How-
ever, there is still room to improve the convergence speed.
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Recent developments in the field of compressive sensing
have led to the introduction of sparsity-promoting penalties in
adaptive filtering algorithms [10, 11, 12, 13], producing zero-
attracting (ZA) and reweighted zero-attracting (RZA) algo-
rithms. These have been shown to provide faster convergence
when the system in question has a degree of sparsity. This
is often the case in the real systems encountered in ANC ap-
plications. To the knowledge of the authors, however, this
powerful sparsity-inducing technique has not been considered
with the modified filtered-x architecture used in ANC.

In this paper, sparsity-inducing techniques are incorpo-
rated into the filtered-x affine projection (FXAP) algorithm.
The FxAP algorithm is selected since it is a popular algo-
rithm for ANC applications, performing well in the presence
of correlated signals, and allowing a trade-off between con-
vergence speed and complexity to be easily controlled by
varying the projection order K. A number of techniques
have been introduced to improve the FxAP algorithm, in-
cluding the introduction of the modified form, MFXAP [5],
and adapting the system parameters over time (see [14] and
references therein). This paper proposes zero-attracting and
reweighted zero-attracting MFxAP algorithms. Experimental
results demonstrate the superior performance of the proposed
algorithms for systems with a moderate degree of sparsity.

The rest of this paper is structured as follows. In Section
2, the active noise control problem is stated and the MFxXAP
algorithm is briefly reviewed. In Section 3 the proposed algo-
rithms are developed with reference to the MFxAP algorithm
from which they derive. In Section 4, the results of simula-
tion trials performed on these algorithms are presented and
discussed. Section 5 presents conclusions and describes av-
enues of further research.

Notation: Throughout this paper, uppercase boldface let-
ters will be used to denote matrices, and lowercase boldface
letters to denote vectors. E'{-} denotes statistical expectation,
sgn{-} is the signum function, I is an identity matrix of appro-
priate dimensions, and ||-||, denotes the pth norm of a vector.
All vectors are column vectors. Following convention, the
term ¢p-norm and notation ||-||o denotes the number of non-
zero elements in a vector.
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Fig. 1. Modified filtered-x AP structure.

2. PROBLEM STATEMENT AND REVIEW OF THE
MFXAP ALGORITHM

In this section, the problem of active noise control is ex-
plained and the MFxAP algorithm is reviewed.

In the common case of feedforward ANC, an error signal
is used to adjust an adaptive filter such that its output can be
‘subtracted’ from a signal using the principle of destructive
interference, and hence eliminate or significantly reduce dis-
turbing noise. However, the electroacoustic nature of ANC
systems introduces a combined secondary path, since each
component has an associated transfer function. It was shown
in [7] that this can be split into two parts, one estimated as part
of the plant, and one occuring after the summing junction and
affecting the error signal, here denoted s(n). The result is a
delay in the system that may cause conventional adaptive al-
gorithms to become unstable. The FX algorithms account for
this by using an estimate of the secondary path, §(n), to filter
the input signal z(n), so that the algorithm input is the filtered
signal zy(n). However, FX algorithms have strict limits on
step size that negatively impact upon convergence speed [8].
The MFX algorithms improve upon this convergence speed
by estimating the actual error signal, but can be improved fur-
ther by introducing variable parameter or sparsity-inducing
techniques such as those proposed here. The derivation of the
MFxAP algorithm is reviewed below.

When deriving the conventional AP algorithm, the follow-
ing expression is minimised:

[w(n+1) —w(n)||®> st dn)=Un)wn+1)

where U(n) is a regressor matrix containing past values of

x(n) as follows:

x(n(— Lz—)l)
Utn) = x n.

z(n—:K—l-l) x(n—K) x(n—L:—K+2)

The MFxAP algorithm is well suited to ANC as it does not
require that d(n) be available for its derivation. Instead, we
set the condition to be

d(n) = Ug(n)w(n +1) ey

where, as seen in Fig. 1, &(n) = d(n) — §(n). This uses
a filtered regressor matrix, Uf(n), containing past values of
xf(n). Therefore, the condition states that the estimated out-
put for the next iteration should equal the estimated desired
signal for the current iteration. Then, using a vector of La-
grange multipliers, A, the cost function becomes:

Ji(n) =[[w(n+1) = w(n)|

. AR
+Re{[d(n) — Uy (m)wn + D72}

In order to minimise the above cost function, we equate the
gradient of J; (n) with respect to w*(n + 1) to zero:

8J1 (n)

w(n + 1) = w(n) + UY (n)A 3)

Substituting the above expression into (1), gives:

d(n) = Us(n)w(n) + Uz (n)UF (n)A

~

d(n) = §(n) + Uy (U (n)A
&(n) = Uy (n)UY (m)A
A = [U;(n)U¥ ()] ~"e(n) 4

Inserting (4) back into (3), and incorporating a step-size pa-
rameter, 1, and a small positive constant, §, to avoid inverting
a singular matrix, the MFxXAP recursion is obtained:

w(n+1) = w(n) + pUF (n)[Us(n)UF (n) + 51}‘%(2)

3. PROPOSED SPARSITY-INDUCING FILTERED-X
AFFINE PROJECTION ALGORITHMS

In this section, the proposed sparsity-inducing filtered-x
affine projection algorithms are derived. In particular, the
zero-attracting and reweighted zero-attracting strategies con-
sidered in [10, 12] are incorporated into a filtered-x structure,
resulting in new algorithms for active noise control.
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3.1. Zero-attracting MFxAP (ZA-MFxAP) algorithm

The ZA-MFxAP incorporates a sparsity-inducing penalty to
attract coefficients towards zero. The obvious choice for such
a penalty would be the £y-norm. However, this is a discontin-
uous and non-convex function, making it costly and difficult
to optimise mathematically. Zero-attracting algorithms use
an {1-norm penalty as an approximation, and the penalty is
added to the cost function in (2) as follows:

Jo(n) =|w(n+1) — w(n)|?
+Re{[d(n) — Ug(n)w(n +1)]A}  (6)
+allw(n+1)[h
As before, this cost function is minimised with respect to
w*(n + 1) and equated to zero, giving:
w(n—+1)=w(n)+ U}{(n)A —asgn{w(n+1)}

Solving for A and incorporating ;. and § as before, and making
the assumption that sgn{w(n + 1)} ~ sgn{w(n)}, we obtain
the ZA-MFxAP recursion:

w(n +1) =w(n) + pU} (n)&(n)
+pUf () Uy (n)sgn{w(n)} @)
— asgn{w(n)}
where p = po is known as the zero-attraction strength, and
U7 (n) = Uy (n)[Uf(n)UJ{{(n) + 6I)~ L. This is identi.cal
to (5) with the addition of two terms, controlled by p, which
attract the coefficients towards zero.

3.2. Reweighted zero-attracting MFxAP (RZA-MFxAP)
algorithm

The RZA-MFxAP algorithm uses a log-sum penalty in place
of the ¢1-norm, as this provides a closer approximation to the
behaviour of the ¢y-norm. Thus, the cost function becomes:

J3(n) =[w(n+1) — w(n)|*

+Re{[d(n) — Us(n)w(n + 1)) A}
. ®)
+7)log(1+ €|wi(n)))
i=1
Following a similar derivation procedureto ZA-MFxAP, the
RZA-MFxAP recursion is given by:

w(n +1) =w(n) + pU} (n)é(n)

9
U U ()% ()~ 1e%() )

where ¥ (n) = ﬁ‘{w&.
. elw(n)] L
In this case the strength of the zero-attraction is controlled
by p' = pye where € is known as the shrinkage magnitude.
The RZA-MFXAP is more selective than the ZA-MFxAP,
and attracts coefficients proportional to ! /. toward zero most
strongly. Therefore careful tuning of € can reduce the bias of

the estimation procedure.
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Fig. 2. Non-sparse plant and secondary paths.

4. RESULTS

This section compares the results of simulation trials for the
proposed algorithms outlined in (7) and (9) with those of the
conventional FXAP and MFxAP algorithms. The results are
averaged over 50 simulation trials.

Three types of primary path were used: a non-sparse path
(density 785/800), illustrated in Fig. 2, a partially-sparse path
formed by arbitrarily setting the majority of the coefficients
in the non-sparse path to zero (density 73/800) and a sparse
path in which the fourth coefficient is set to one and all re-
maining coefficients to zero (density 1/800). Three types of
secondary path with similar densities were generated in the
same way from the non-sparse secondary path in Fig. 2, with
§(n) = s(n). A poorer estimate of s(n) is known to degrade
convergence speed, although it has been shown in [15] that in
rare cases §(n) # s(n) may improve algorithm performance.

For each primary path formulation, the algorithms were
run for 220,000 iterations with the secondary path set as
sparse at the start of the experiment, changed to partially-
sparse at iteration 10,000 and to non-sparse at iteration
70,000. These values were found to provide sufficient time
for the proposed algorithms to converge. Figures 3-5 show
mean-square deviation (MSD) convergence curves for each
of these experiments. Each secondary path change requires
that 1 and the parameter € in the RZA-MFxAP algorithm be
retuned, with the requisite values given in the figures. The
values § = 0.002 and p = 0.0000001 were found to be
suitable for almost all applications, with p requiring retuning
only for the ZAMFxAP algorithm in Fig. 5.

The first 10,000 iterations in each figure illustrate algo-
rithm performance when the secondary path is sparse. In all
cases, the convergence speeds of conventional and proposed
algorithms are similar, with the higher-order RZA-MFxAP
algorithms showing a slight improvement upon FxAP and
MFxAP when the plant is partially sparse as in Fig. 4.

It is seen in Fig. 3 that as the secondary path density
increases, the convergence speed of the FxAP and MFxAP
decreases significantly. The ZA-MFxAP and RZA-MFxAP
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Fig. 3. MSD results for sparse plant (p = 0.0000001 and
€ = 10 unless stated otherwise).
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Fig. 4. MSD results for partially-sparse plant (p = 0.0000001
and ¢ = 10 unless stated otherwise).

with projection order 4 improve upon these algorithms by
converging within far fewer iterations, but the higher-order
RZA-MFxAP algorithm reduces convergence time to a very
low number of iterations and also attains lower steady-state
MSD than the other algorithms, indicating that the compara-
tive density of the secondary path has a less significant effect
on this algorithm than conventional ANC algorithms.

The performance of the algorithms when the plant is par-
tially sparse can be seen in Fig. 4. When the secondary path
is semi-sparse, the proposed algorithms show clear improve-
ment - in terms of both MSD convergence speed and steady-
state performance - over the traditional MFxXAP, and vastly
outperform the FXAP algorithm. As the secondary path den-
sity increases further in the third section of Fig. 4, the per-
formance of the MFxAP is significantly degraded, whereas
the proposed algorithms continue to perform far better, with
the RZA-MFxAP - particularly at higher order - showing the
fastest convergence. It should be noted that every algorithm
initially converges at the same rate, but the RZA-MFxAP al-
gorithms increase in convergence speed as the selective aspect
begins work on coefficients proportional to 1/€ [10]. Steady-
state differences are clearly visible between RZA-MFxAP or-
ders in this section of Fig. 4. This is primarily due to the
tuning of €, which has a significant impact upon convergence
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-5 o MFXAP, K=4,1=1,0.6,0.4
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£=10,1000,10000
, RZA-MFxAP, K=16,11=0.5,0.4,0.6
£=10,1000,10000

Fig. 5. MSD results for non-sparse plant (p = 0.0000001 and
€ = 10 unless stated otherwise).

speed if reduced from the selected value. It would therefore
be worthwhile to consider algorithms incorporating a variable
shrinkage magnitude parameter as an improvement to the al-
gorithms proposed here, allowing steady-state performance to
be improved without negatively affecting convergence rate.

The results of running the algorithms for a non-sparse
plant can be seen in Fig. 5. In this case, while the pro-
posed algorithms continue to significantly outperform the
FxAP, the performance gain over the MFXAP algorithm is
less pronounced. This is because the plant is non-sparse, and
therefore the sparsity-inducing technique does not give the
proposed algorithms an advantage when finding an estimate.
Although the difference is less notable than in previous cases,
the proposed algorithms do outperform the MFXAP some-
what - particularly the RZA-MFxXAP with a projection order
of 16 - due to the presence of close-to-zero coefficients in the
plant impulse response.

These results demonstrate that in any case where a de-
gree of sparsity is to be expected in the primary or secondary
path, the best convergence speed and steady-state error can
be obtained by using the proposed RZA-MFxAP algorithm,
particularly at a relatively high projection order such as 16. A
higher order may be undesirable from a complexity point of
view, but since the algorithms have a complexity on the order
of L? and K < L, the increase in complexity will be small
in proportion to the performance gain. Further work might
incorporate recent improvements to sparse techniques [16].

5. CONCLUSION

This paper has proposed adaptive algorithms for exploiting
sparsity in modified filtered-x algorithms required in active
noise control problems. The proposed algorithms have incor-
porated zero-attracting and reweighted zero-attracting strate-
gies into filtered-x adaptive algorithms. The results of simu-
lations have shown that the proposed techniques improve the
convergence of the existing modified algorithm in the case
where the primary and secondary paths exhibit a degree of
sparsity.
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