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Camino de Vera s/n, 46022 Valencia, Spain
{lfuster,mdediego,mferrer,agonzal}@iteam.upv.es

ABSTRACT

This paper provides an analysis of the steady-state behav-
ior of two biased adaptive algorithms recently introduced for
listening room compensation, the biased filtered-x normal-
ized least mean squares (Fx-BNLMS) and the biased filtered-
x improved proportionate NLMS (Fx-BIPNLMS). We give
theoretical results that show that the biased algorithms can
outperform the unbiased ones in terms of the mean square
error, especially in low signal-to-noise ratio (SNR) scenar-
ios. Moreover, for impulse responses exhibiting high sparse-
ness, the improved proportionate algorithms achieve faster
convergence than the standard NLMS. Thereby, the advan-
tages of the Fx-BIPNLMS algorithm are justified theoreti-
cally in terms of the excess mean square error. Simulation
results show that there is a relatively good match between the-
ory and practice, especially for low µ values.

Index Terms— Steady-state analysis, proportionated al-
gorithms, biased adaptive filtering, room equalization

1. INTRODUCTION

Adaptive filtering becomes an excellent tool for audio appli-
cations mainly when practical systems imply time-varying
scenarios and the use of multiple loudspeakers and micro-
phones [1, 2]. In the particular case of room equalization,
massive computation requirements can be efficiently deal
with iterative filters such as the adaptive filters instead of
using fixed strategies. As an example, several contributions
have been recently proposed in the time, frequency or wave
domain [3, 4, 5, 6, 7, 8].

In this paper, and in the adaptive equalization (AE) con-
text, we theoretically study how improved proportionate (IP)
schemes combined with a biased strategy can be used to
produce a good tradeoff between convergence speed and
steady-state misadjustment, especially in situations with both
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low signal-to-noise ratios (SNR) and sparse optimal coeffi-
cient vectors. On the one hand, the IP adaptive filters can
be very helpful to improve the filter convergence with a high
or unknown degree of sparsity [9, 10, 11, 12]. To alleviate
this problem in active noise control (ANC) applications, the
filtered-x IP normalized least mean squares (Fx-IPNLMS)
algorithm was presented in [13]. On the other hand, in [14] a
simple scheme that biased the adaptive filter weights towards
zero was proposed in order to reduce the steady-state mean
square error (MSE) of adaptive filters for system identifica-
tion. More recently, the biased Fx-IPNLMS (Fx-BIPNLMS)
algorithm was proposed as a way to take advantage of both
strategies, the IP and the biased scheme [3]. The biased
filtered-x NLMS (Fx-BNLMS) algorithm was also developed
and compared with the Fx-BIPNLMS, showing that the IP
scheme can offer improved convergence capabilities. Al-
though several simulations were provided in [3], we further
study the performance of both biased filtered-x algorithms
through theoretical analysis.

The aim of this contribution is to apply and adapt the ap-
proaches of [10, 14] to the steady-state analysis of two biased
algorithms suitable for AE, see Fig. 1. Even though we fol-
low the same methodology of [10] and [14], AE applications
require ad hoc treatment, similar to [15] for ANC. This paper
is organized as follows: In the next section we describe the
Fx-BNLMS and the Fx-BIPNMLS algorithms for AE. The
steady-state analysis of the adaptive algorithms is carried out
in Sec. 3. Several examples that validate the analysis are pro-
vided in Sec. 4. Finally, Sec. 5 presents the main conclusions
of the work.
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Fig. 1. Block diagram of an AE system.
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Fig. 2. Block diagram of a biased AE system.

2. BIASED ALGORITHMS FOR ADAPTIVE
EQUALIZATION

An extended description of the Fx-IPNLMS for AE can be
followed in [3]. In contrast to the Fx-NLMS which distributes
the adaptation energy equally among all the filter coefficients,
the Fx-IPNLMS assigns a different adaptation speed µl(n) to
each coefficient according to,

wl(n) = wl(n−1)+µl(n)e(n)xf (n−l), l = 0, . . . , Lw−1,
(1)

µl(n) =
µgl(n)

δ +
∑Lw−1
k=0 gk(n)x2f (n− k)

, (2)

gl(n) = (1− κ) 1

2Lw
+ (1 + κ)

|wl(n)|
ε+ 2

∑
k |wk(n)|

, (3)

where wl(n) is the lth coefficient of the Lw-length vector
w(n), and xf (n) corresponds to the input signal x(n) filtered
through the Lh-length estimated impulse response ĥ. Mean-
while, gl(n) is the adaptation gain factor of the lth filter co-
efficient and κ ∈ [−1, 1] arranges from the NLMS algorithm
(κ = −1) to κ = 1 for the proportionate NLMS algorithm.

The objective is to estimate the Lw-length optimal co-
efficient vector w0, such that the desired signal d(n) will
be the input signal with a suitable source-microphone delay
x(n− τ). Thus, the vector w0 will correspond to the inverse
of the acoustic channel, w0⊗h = δ(n−τ), where⊗ denotes
the discrete linear convolution. Therefore, the desired signal
can be written as d(n) = wT

0 xf (n), where xf (n) is a Lw
vector with the input signal x(n) filtered by the estimated im-
pulse response ĥ. However, this result is not achieved in prac-
tice and it is more realistic to use d(n) = wT

0 xf (n) + r(n),
being r(n) a Gaussian noise of zero mean and σ2

r variance,
uncorrelated with the input signal.

The error signal e(n) can be expressed as a function of
the a priori error ea(n) = w̃T (n − 1)xf (n) and the coeffi-
cient error vector w̃(n) = [w0 −w(n− 1)]. Similarly to the
methodology applied in [15] it holds,

e(n) = d(n)− z(n) = wT
0 xf (n) + r(n)−wT (n− 1)xf (n)

= ea(n) + r(n). (4)

Regarding the biased schemes, the biased filtered-x AE
system is explained in detail in [3] and illustrated in Fig. 2.
The output error of the biased system eλ(n) is defined as

eλ(n) = eaλ(n) + r(n), where the a priori error of the bi-
ased scheme eaλ(n) can be written as a term of the previously
defined unbiased a priori error ea(n) similarly to [14],

eaλ(n) = λ(n)ea(n) + [1− λ(n)]
[
wT

0 xf (n)
]
. (5)

3. STEADY-STATE ANALYSIS

To analyze the steady-state performance of both adaptive fil-
ters, the Fx-BIPNLMS and the Fx-BNLMS, we use the excess
mean square error, EMSE, defined as

EMSE = Jex,λ(n) = E
{
|eaλ(n)|

2
}
. (6)

Squaring eaλ(n) in (5) and taking expectations as in [14], (6)
can be rewritten using the EMSE term of the unbiased version
Jex(n). Assuming that w(n) and x(n) are uncorrelated, and
in steady state E {w(n)} = w0 as n −→∞, we get

Jex,λ(∞) = λ2(∞)Jex(∞)+[1− λ(∞)]
2
wT

0 Rxfw0, (7)

where Rxf corresponds to Rxf = E
{
xf (n)x

T
f (n)

}
.

Furthermore, to obtain the optimal value in steady state of
the scaling factor λ(∞), the previous equation is derived with
respect to λ and equaled to zero,

λ(∞) =
1

1 + Jex(∞)

wT0 Rxf
w0

. (8)

For equalization applications, the use of the filtered-x schemes
is the main difference with respect to that of [14]. In this case,
the existence of the estimated channel response ĥ in the term
wT

0 Rxfw0 allows to suitably manipulate it as,

wT
0 Rxfw0 = wT

0 E
{
ĤTx(n)xT (n)Ĥ

}
w0

=
[
wT

0 Ĥ
T
]
E
{
x(n)xT (n)

} [
Ĥw0

]
=
[
wT

0 Ĥ
T
]
Rx

[
Ĥw0

]
, (9)

where x(n) is a vector with the last Lw + Lh − 1 samples of
the input signal x(n) and Ĥ corresponds to the discrete linear
convolution of the estimated channel response ĥ, expressed in
matrix form as a Toeplitz matrix of dimensions (Lw + Lh −
1)× Lw,

6698



Ĥ =



ĥ(0) 0 0

ĥ(1) ĥ(0) 0
... h(1)

. . . 0

ĥ(Lh − 1)
... ĥ(0)

0 ĥ(Lh − 1) ĥ(1)

0 0
. . .

...
0 0 0 ĥ(Lh − 1)


(10)

If the equalization is perfectly achieved, the matrix vector
product

[
Ĥw0

]
corresponds to a (Lw +Lh − 1)× 1 column

vector containing the delta function δ(n− τ). Therefore, the
term wT

0 Rxfw0 can be simplified as
wT

0 Rxfw0 = σ2
x, (11)

where σ2
x is the variance of the input signal.

Then, substituting (11) in both (7) and (8), we find that

Jex,λ(∞) = λ2(∞)Jex(∞) + [1− λ(∞)]
2
σ2
x, (12)

λ(∞) =
1

1 + Jex(∞)
σ2
x

. (13)

For the Fx-NLMS scheme and following the approach
shown in [15] but in the room equalization context, a recur-
sion for ‖w(n)‖2 based on the energy conservation relation
can be derived, where ‖ · ‖ denotes the Euclidean norm. This
results in the EMSE for the Fx-NLMS algorithm,

Jex(∞) = lim
n→∞

E
{
|ea(n)|2

}
=

µσ2
r

2− µ
. (14)

For the Fx-IPNLMS algorithm, we follow the approach of
[10]. As before, the difference lies in the use of a filtered-x
version of the input signal. Thus, doing some approximations
in (2), (1) becomes,

wl(n) = wl(n− 1) +
µgl(n)

σ2
xf

e(n)xf (n− l), (15)

where σ2
xf

is the variance of the input signal x(n) filtered
through the estimated channel response ĥ.

Finally, the EMSE for the Fx-IPNLMS is given by,

Jex(∞) = σ2
xf

Lw∑
l=1

E
{
w̃2
l (∞)

}
= µσ2

r(n)

Lw∑
l=1

gl(∞)

2− µgl(∞)
,

(16)
being gl(∞) = (1− κ) 1

2Lw
+ (1 + κ)

|w0,l
|

ε+2
∑
k |w0,k

| .
Note that for AE applications where at least a hundred

of filter coefficients are needed for the inverse filter and∑Lw

l=1
gl(n) ≈ 1, we can approximate

∑Lw

l=1

gl(∞)
2−µgl(∞) =∑Lw

l=1

1
[2/gl(∞)]−µ

∼=
∑Lw

l=1
gl(∞)/2 = 1/2, as 2/gl(∞)�

µ. Thus, (16) does not depend on the κ-value,

Jex(∞) =
µσ2

r

2
. (17)

Finally, (14) and (16) can be replaced in (12) to get the steady-
state EMSE of the considered biased algorithms.
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Fig. 3. (a) Acoustic channel; (b) Inverse of the channel.
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Fig. 4. Theoretical (dashed line) and estimated (solid line for the
Fx-BIPNLMS and dotted line for the Fx-BNLMS algorithms) λ(∞)
for different µ and SNR values.

4. SIMULATION RESULTS

In this section, theoretical predicted values are compared to
the averaged estimated ones for the EMSE expressions and
the scaling factor λ(n) in steady state, for both the Fx-NLMS
and the Fx-IPNLMS schemes and their biased versions.

Considering that the performance of the models is not
dependent on the acoustic channel length considered, a 64-
samples channel is used for simplicity. This channel has been
measured in a real listening room [3], but artificially modified
to get a quasi-sparse inverse impulse response, see Fig. 3. The
optimal filter w0 in Fig. 3 (b) has been computed as the in-
verse filter of the acoustic channel showed in Fig. 3 (a) by us-
ing the least squares error method (LSE) [16]. A length twice
the length of the acoustic channel and a delay τ = 78 samples
have been considered. In this context, the length used allows
to obtain a good approximation without highly increasing the
complexity of the algorithms.

Fig. 4 compares the theoretical results (in dashed line)
for the scaling factor at steady state, λ(∞) in (13), with the
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Fig. 5. Estimated (solid line for the IP type algorithms and dotted
line for the NLMS ones) and theoretical (dashed line) EMSE curves
in steady state:(a) For their unbiased versions Jex(∞) [Eq. (16)];
and (b) for the biased ones Jex,λ(∞) [Eq. (12)].

averaged estimated ones (in solid line for the Fx-BIPNMLS
schemes and in dotted line for the Fx-BNLMS ones) for dif-
ferent values of both SNR and µ. For the improved propor-
tionated algorithms, κ = −0.5 has been chosen as recom-
mended in [9]. Each curve representes a different µ value
and for various SNR values along x-axis, keeping constant
σ2
x = 1 and varying σ2

r . Fig. 4 shows that for high val-
ues of SNR the scaling factor is close to 1, and from (12)
Jex,λ(∞) = Jex(∞). For low SNR and high µ values λ(∞)
tends to 0. It can be observed that the estimated results for the
Fx-BIPNLMS agree with the theoretical ones especially for
low µ values.

As was developed in the theoretical analysis, the EMSE
expression (16) can be approximated by (17) providing the
same theoretical results of Jex(∞) for both the Fx-IPNLMS
and the Fx-NLMS algorithms. Fig. 5 (a) shows the EMSE
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Fig. 6. EMSE evolution with time-varying channel for the Fx-
IPNLMS and Fx-NLMS algorithms and their biased versions.

value in dB for the unbiased algorithms, Jex(∞) in (16). Es-
timated results (solid line for the Fx-IPNLMS and dotted line
for the Fx-NLMS algorithms) fall close to the theoretical ones
(dashed line), their values increase with σ2

r and µ, and are
almost similar to the theoretical ones. Fig. 5 (b) shows the
Jex,λ(∞) in (12) for the Fx-BIPNLMS and the Fx-BNLMS
algorithms. Also the simulated results agree with the theo-
retical ones, but are upper limited by 0dB as the SNR de-
creases. As in Fig. 4, a worst behavior is obtained for high µ
values. Although perfect secondary path estimates have been
considered in the present simulations, the derived models pre-
dict quite accurately the simulated results with not very high
modelling errors.

The second experiment shows the ability of the biased
IP scheme to improve the convergence performance of the
normalized version. Fig. 6 shows the EMSE evolution for
the different algorithms with µ = 0.1 and a low value of
SNR= −5dB, thus the biased versions achieve lower EMSE
values. Furthermore, after 75, 000 samples the channel h
slightly changes and thus its inverse filter w0, showing the
ability of the adaptive algorithms to follow system variations.

5. CONCLUSIONS

The steady-state analysis of two biased filtered-x algorithms,
the Fx-BIPNLMS and Fx-BNLMS algorithms, has been pre-
sented. The novelty of this work is the theoretical model of
the biased schemes applied to adaptive equalization that in-
volves the use of filtered-x structures.

Simulation results show a good match between the the-
oretical expressions and the estimated values, especially for
low µ values. The biased algorithms outperform their un-
biased versions for low SNR values. Moreover, the Fx-
BIPNLMS algorithm exhibits a better convergence perfor-
mance than the Fx-BNLMS implementation.
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G. Piñero, “A biased multichannel adaptive algorithm
for room equalization,” in Proc. EURASIP European
Signal Processing Conference (EUSIPCO), 2012, pp.
1344–1348.

[4] S. Cecchi, A. Primavera, F. Piazza, and A. Carini, “An
adaptive multiple position room response equalizer,” in
Proc. EURASIP European Signal Processing Confer-
ence (EUSIPCO), September 2011.

[5] M. Kolundzija, C. Faller, and M. Vetterli, “Multi-
channel low-frequency room equalization using percep-
tually motivated constrained optimization,” in Proc.
IEEE Int. Conf. on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2012, pp. 533–536.

[6] S. Goetze, M. Kallinger, A. Mertins, and K.-D. Kam-
meyer, “Multi-channel listening-room compensation us-
ing a decoupled filtered-x LMS algorithm,” in 42nd
Asilomar Conf. on Signals, Systems and Computers, oct.
2008, pp. 811–815.

[7] S. Spors, H. Buchner, and R. Rabenstein, “Efficient ac-
tive listening room compensation for wave field synthe-
sis,” 116th AES Convention, 2004.

[8] M. Schneider and W. Kellermann, “Adaptive listening
room equalization using a scalable filtering structure in
the wave domain,” in Proc. IEEE Int. Conf. on Acous-
tics, Speech, and Signal Processing (ICASSP), 2012, pp.
13–16.

[9] J. Benesty and S.L. Gay, “An improved PNLMS algo-
rithm,” in Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP), 2002, vol. 2, pp. II–
1881–II–1884.

[10] J. Arenas-Garcia and A.R. Figueiras-Vidal, “Adaptive
combination of proportionate filters for sparse echo can-
cellation,” IEEE Trans. Audio, Speech, and Language
Process., vol. 17, no. 6, pp. 1087–1098, 2009.

[11] C. Paleologu, J. Benesty, and S. Ciochina, “An improved
proportionate nlms algorithm based on the l0 norm,” in
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP), 2010, pp. 309–312.

[12] Stefan Goetze, Feifei Xiong, Jan Ole Jungmann, Markus
Kallinger, Karl-Dirk Kammeyer, and Alfred Mertins,

“System identification of equalized room impulse re-
sponses by an acoustic echo canceller using proportion-
ate LMS algorithms,” in 130th AES Convention, May
2011.

[13] Jerónimo Arenas-Garcıa, Marıa de Diego, Luis A
Azpicueta-Ruiz, Miguel Ferrer, and Alberto Gonza-
lez, “Combinations of proportionate adaptive filters in
acoustics: An application to active noise control,” in
Proc. EURASIP European Signal Processing Confer-
ence (EUSIPCO), 2011.

[14] M. Lazaro-Gredilla, L.A. Azpicueta-Ruiz, A.R.
Figueiras-Vidal, and J. Arenas-Garcia, “Adaptively
biasing the weights of adaptive filters,” IEEE Trans.
Signal Process., vol. 58, no. 7, pp. 3890–3895, 2010.

[15] M. Ferrer, A. Gonzalez, M. De Diego, and G. Piñero,
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