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ABSTRACT

In listening room compensation, the aim is to compensate for
the degradations that are rendered to an audio signal by trans-
mission in a closed room. Due to multiple reflections of the
soundwaves, the listener receives a superposition of delayed
and attenuated versions of the source signal. A filter is de-
signed so that the convolution of the room impulse response
and the equalizer contains better acoustic properties than the
original acoustic channel. Common approaches for derever-
beration optimize only the time-domain representation of the
overall impulse response and may introduce distortions in the
frequency domain. Equalization of the frequency response, on
the other hand, often does not consider the time-domain behav-
ior in an ideal way. In this paper, we propose a novel method to
jointly consider both the time- and frequency-domain behavior.
It outperforms the methods known from literature in terms of
dereverberation and equalization performance. Results are pre-
sented for a room impulse response measured in a real living
room.

Index Terms— room impulse response, listening room
compensation, optimization, spectral flatness

1. INTRODUCTION

In listening room compensation (LRC) the goal is to compen-
sate for an acoustic channel, described by the room impulse
response (RIR), in order to make the received signal hardly
distinguishable from the original source signal by a human
listener [1]. Classically, the LRC filter is designed in such a
way that the difference between the global impulse response
(GIR, the convolution of the room impulse response with the
LRC filter) and a given target system is minimized in a least-
squares sense [2]. The target system is usually chosen as a
bandpass-filtered and/or delayed unit pulse.

More relaxed approaches originate from the field of chan-
nel shortening. In channel shortening, the effective length of
an impulse response is reduced by concentrating most of the
energy of the GIR in a certain time interval. For example, by
concentrating the energy in the first 50 ms after the first peak,

the psychoacoustic D-50 measure [3], used to quantify speech
intelligibility, is maximized.

In [4] it was shown that a shaping is preferable over a
shortening in practice. The method for reshaping an impulse
response has been further developed in [5]. The least-squares
optimality criterion was generalized to a p-norm based mea-
sure. It could be shown that the p-norm based optimality
criterion allows for a much better control of the reshaping than
least-squares based methods. By preferring solutions with
one dominant peak, the GIR obtained by p-norm optimization
according to [5] usually shows a reasonably flat frequency
response. An efficient implementation for CUDA-enabled
hardware was developed in [6]. However, for rooms with large
reverberation time, it was shown in [7] that it is preferable
to also consider the frequency-domain representation of the
GIR during optimization, in order to guarantee a flat frequency
response.

In this work, we present a new method to jointly reshape
and equalize a RIR. It achieves a time-domain reshaping that
uniformly follows any pre-defined decay curve (e.g., the av-
erage temporal masking curve of human listeners according
to [8]) by optimizing a p-norm based optimality criterion. In
addition, a flat overall frequency response is obtained by com-
bining the time-domain criterion with the spectral flatness
measure [9, 10], here applied to the squared magnitude fre-
quency response of the overall system. Experiments show that
the proposed method yields superior results compared to other
methods such as the one proposed in [7].

This work is organized as follows. In Section 2 we give
a short overview of the p-norm based method to design re-
shaping filters. In Section 3 we briefly review the spectral
flatness measure and integrate it into the optimization problem.
Reshaping results for a measured room impulse response are
given in Section 4. Finally, some conclusions are drawn in
Section 5.

Notation: Vectors and matrices are denoted by lowercase
and uppercase boldface letters, respectively. The asterisk ∗
denotes convolution, and ‖·‖p returns the p-norm of a vec-
tor. The superscript H denotes the Hermitian transpose of a
matrix, the superscript ∗ denotes the complex conjugate of a
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complex number. The sign of a complex number is defined as
its projection onto the unit circle.

2. ROOM IMPULSE RESPONSE RESHAPING

In this section we give a brief overview of the p-norm based
reshaping method from [5]. Let c(n) denote the room im-
pulse response of length Lc. With the reshaping filter h(n)
being of length Lh, the global impulse response is given by
g(n) = h(n) ∗ c(n) with length Lg = Lc + Lh − 1. Usually,
two window functions wd(n) and wu(n) are used to define a
desired and an unwanted part of the GIR. In channel shorten-
ing approaches, the ratio of the energies of the desired and the
unwanted parts is maximized [11, 4].

2.1. p-Norm Based Reshaping

In [5] it was proposed to generalize the quadratic optimality cri-
terion usually considered for dereverberation filter design (e.g.
[4]) to a p-norm based criterion. The optimization problem is
given by

minh : f(h) , f(h) = log

(
‖gu‖pu

‖gd‖pd

)
, (1)

where gu is the vector made up by the unwanted part of
the global impulse response gu(n) = wu(n) g(n), and
the desired part gd is defined accordingly. The vector
h = [h1, h2, . . . , hLh

]T contains the equalizer impulse re-
sponse h(n), i.e., hn = h(n− 1). By choosing appropriately
high values for pd and pu (typically 10 ≤ pd, pu ≤ 20) and
proper windows, one achieves a very even shaping of the
time-domain coefficients of the unwanted part of the global
impulse response that, for example, closely follows a given
computational model for the average temporal masking curve
of human listeners [5]. The optimization of (1) is carried out
by applying a gradient-descent procedure.

2.2. Frequency-Domain Based Regularization

In [4] it has been shown that one needs to consider the spectral
distortions that can be introduced by designing the equalizer
just for the time-domain representation of the RIR. In [4] the
spectral distortions were corrected by an additional postfilter
that was designed for the GIR. It has been proposed to consider
the frequency-domain representation of the global impulse
response during optimization in [7]. For this, a p-norm based
optimality criterion in the frequency domain was presented.
The regularization term from [7] is given by

y(h) = ‖gf‖pf
, (2)

where gf is the vector containing the discrete Fourier trans-
form of the global impulse response. The regularization term
with pf ≈ 8 forces the overall system to show no high spectral
peaks.

3. THE PROPOSED REGULARIZATION

In this work, we replace the regularization term (2) from [7]
by the spectral flatness measure (SFM) known from literature
[9, 10]. The gradient of the new extended objective function is
explicitly derived to allow for an efficient filter design.

3.1. Spectral Flatness Measure

The spectral flatness of an impulse response g(n) can be mea-
sured as the ratio of the geometric and arithmetic means of
squared samples of its frequency response G

(
ejω
)
:

SFMg =

(∏K
k=1

∣∣G(ejωk
)∣∣2) 1

K

1
K

∑K
k=1 |G(ejωk)|2

, (3)

where ωk, k = 1, 2, . . . ,K are the discrete frequencies under
consideration. Typically, the frequency response is computed
by a length-K discrete Fourier transform (DFT) of g(n). In
the case of a perfectly flat frequency response, no spectral
distortions occur, and the SFM is equal to one. With increasing
spectral distortions, the SFM degrades down to zero.

3.2. Proposed Method

To design the reshaping filter, we formulate an extended ob-
jective function (as in [7]) that jointly considers the time- and
the frequency-domain representations of the global impulse
response. The latter is introduced through the SFM, which
penalizes both spectral peaks and notches of the overall mag-
nitude frequency response. This is in contrast to the p-norm
based criterion from [7] that mainly measured peaks in the
magnitude frequency response. In order to take into account
properties of the measurement and/or reproduction system (e.g.
the lowpass filter used in the D/A converter and the inability of
acoustic setups to reproduce a DC signal), we allow the SFM
to be computed solely for a predefined frequency range during
the optimization process.

The proposed optimization problem is given by

minh : f(h) + αs(h) , (4)

where f(h) is given in equation (1), α is a positive weighting
factor for the regularization term

s(h) = − log


(∏K

k=1

∣∣G(ejωk
)∣∣2) 1

K

1
K

∑K
k=1 |G(ejωk)|2

 (5)

with K being the number of discrete frequencies in the range
between ω1 and ωK . The log operation in (5) allows for an
easier expression of the gradient∇hs(h).

In the following, we will use vector notation for the deriva-
tion of the required gradient. For this, a vector g is made
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up by the K considered entries of the frequency response of
the global system with impulse response g(n) in the form
g = [g1, g2, . . . , gk]

T with gk = G(ejωk). With C denoting
the convolution matrix of c(n) and F̃ being a modified DFT
matrix that just contains the rows capturing the discrete fre-
quencies ωk, k = 1, 2, . . . ,K, the vector g can be expressed
as

g = Mh with M = F̃C. (6)

By exploiting the logarithmic laws, (5) can be rewritten as

s(h) = A(h)−B(h) , (7)

with

A(h) = log

(
1

K

K∑
k=1

|gk|2
)

(8)

capturing the arithmetic mean part of the calculation of the
SFM and

B(h) =
2

K

K∑
k=1

log(|gk|) (9)

capturing the part which calculates the geometric mean of the
SFM.

Considering (7), the gradient∇hs(h) is given by

∇hs(h) = ∇hA(h)−∇hB(h) . (10)

The derivation of ∇hA(h) and ∇hB(h) is given in the fol-
lowing.

3.2.1. Gradient for the Arithmetic Mean

By applying the chain rule, the partial derivative of A(h) with
respect to a coefficient hn is given by

∂A(h)

∂hn
= ζa

K∑
k=1

2

K
|gk| sign{gk}mkn, (11)

where mkn denotes the entry in the k-th row and n-th column
of M and

ζa =
1

1
K

∑K
k=1 |gk|

2
. (12)

By simplifying (11), the gradient for the part capturing the
arithmetic mean is given by

∇hA(h) =
2∑K

k=1 |gk|
2
MHg. (13)

3.2.2. Gradient for the Geometric Mean

By applying the chain rule, the partial derivative of B(h) with
respect to hn is given by

∂B(h)

∂hn
=

2

K

K∑
k=1

1

|gk|
sign{gk}mkn. (14)

By defining a vector g̃ whose components g̃k are given by

g̃k =
1

g∗k
, (15)

the gradient of ∇hB(h) can be expressed quite compact in
vector notation:

∇hB(h) =
2

K
MH g̃. (16)

3.2.3. Overall Update Rule

The optimization problem in (4) is solved by applying a
gradient-descent procedure with an adaptive step-size com-
puted by line search [12]. The update rule reads:

hl+1 = hl − µl
(
∇hf

(
hl
)
+ α∇hs

(
hl
))
, (17)

where µl is the adaptive step-size in iteration l, ∇hf(h) is
given in [5] and ∇hs(h) is the gradient derived above; µl is
chosen so that the value of the objective function decreases in
every iteration.

Due to the special structure of the matrices F̃ and C, for
uniformly spaced frequencies ωk, the gradient can be com-
puted efficiently using the fast Fourier transform (FFT) and its
inverse.

4. RESULTS

We tested the proposed approach in a real-world scenario.
The RIR under investigation was measured with an exponen-
tial sine sweep [13] in a living room with a total area of 44
square meters (including the attached open kitchen) using a
high-quality audio system. For the recordings we used a Beyer-
dynamics MM1 microphone. The sampling rate for playback
and recording was fs = 44.1 kHz, and the RIR has been lim-
ited to a length of Lc = 8000 taps. The measured RIR and
its frequency response are depicted in Fig. 1. The frequency
response is shown in the range from 0 Hz up to 20 kHz while
we are considering only the range from 20 Hz to 20 kHz for
equalization and evaluation.

For all experiments, the sampling rate was set as 44.1 kHz,
and the parameters were chosen as pd = 20, pu = 10 (and
pf = 8 for the p-norm based regularization term [7]). For
the weighting windows wd(n) and wu(n) we used the func-
tions proposed in [5] that are designed to capture the average
temporal masking properties of the human auditory system.

To quantify the quality of the reshaping in the time domain,
we utilize the normalized perceivable reverberation quantiza-
tion (nPRQ) measure [14]. The nPRQ captures the average
overshot of the time coefficients of an impulse response that
exceed the model for the average temporal masking limit ac-
cording to [8] on a logarithmic scale. In the case of all time
coefficients being below the average temporal masking limit
or below −60 dB, we have nPRQ = 0. The −60 dB limit
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Fig. 1. The time-domain (upper plot) and frequency-domain
(lower plot) representation of the measured RIR. The dashed
line represents the average temporal masking limit.
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Fig. 2. The time-domain (upper plot) and frequency-domain
(lower plot) representation of the reshaped impulse response
using the p-norm based regularization method from [7]. The
dashed line represents the average temporal masking limit.

is motivated by the definition of the reverberation time T60
from room acoustics [14]. To quantify the spectral distor-
tions, we evaluate the SFM [10] in a frequency range from
fmin = 20 Hz up to fmax = 20 kHz.

For all experiments, the weighting factor α was chosen
empirically to yield both good overall reshaping and equaliza-
tion.

For the experiment with the p-norm based regularization
term from [7], we chose an equalizer length of Lh = 8000 and
α = 15, which yielded and acceptable SFM and still decreased
the nPRQ value; the resulting overall impulse response is
depicted in Fig. 2.

In Fig. 3 the result for the novel proposed approach with
Lh = 8000 and α = 2 is depicted. With these parameters, the
proposed method achieves a reduction of the nPRQ measure
from 12.91 dB down to 2.08 dB. The spectral flatness of the
frequency range under investigation could be increased from
0.52 up to 0.8.
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Fig. 3. The time-domain (upper plot) and frequency-domain
(lower plot) representation of the reshaped impulse response
using the proposed approach. The dashed line represents the
average temporal masking limit.

Table 1. Results for the experiments. The SFM was computed
in a range between 20 Hz and 20 kHz.

Algorithm nPRQ [dB] SFM

unreshaped 12.91 0.52
p-norm reg (Lh = 8000, α = 15) 6.23 0.71
SFM reg (Lh = 4000, α = 1.5) 5.07 0.74
SFM reg (Lh = 8000, α = 2) 2.08 0.80

More results for both methods are given in Table 1. The
result achieved with the p-norm based method is given in the
line denoted by ”p-norm reg”, the results achieved with the
proposed method are given in the lines denoted by ”SFM reg”.
In comparison to the p-norm based regularization method, the
experiments showed that the proposed method yields superior
results in terms of nPRQ and SFM, even with much shorter
filters (Lh = 4000 for the proposed method and Lh = 8000
for the p-norm based method).

5. CONCLUSIONS

In this contribution we developed a new method to regular-
ize time-domain based reshaping algorithms in the frequency
domain to yield a flat overall frequency response. In compar-
ison to former methods, we directly optimize an established
measure to capture the flatness of a frequency response. Exper-
iments showed that the proposed method yields superior results
in terms of dereverberation and equalization performance in
comparison to other state-of-the-art reshaping algorithms. In
addition, it allows for an equalization in a predefined frequency
range. In future works we will investigate the integration of
auditory scales and individual frequency weighting into the
optimization problem.
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