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ABSTRACT
It has been shown that the combination of multi-modal MRI
images can improve the discrimination of diseased tissue. The
fusion of dissimilar imaging data for classification and seg-
mentation purposes however, is not a trivial task, as there
is an inherent difference in information domains, dimension-
ality and scales. This work proposes a multi-view consen-
sus clustering methodology for the integration of multi-modal
MR images into a unified segmentation of tumoral lesions for
heterogeneity assessment. Using a variety of metrics and dis-
tance functions this multi-view imaging approach calculates
multiple vectorial dissimilarity-spaces for each MRI modality
and makes use of cluster ensembles to combine a set of un-
supervised base segmentations into an unified partition of the
voxel-based data. The methodology is demonstrated in appli-
cation to DCE-MRI and DTI-MR, for which a manifold learn-
ing step is implemented in order to account for the geometric
constrains of the high dimensional diffusion information.

Index Terms— Cluster Ensembles, Clustering, Classifi-
cation, Segmentation, DTI-MR, DCE-MRI

1. INTRODUCTION

Many tumors, such as human gliomas, are characterized by
topographically heterogeneous histopathology or have locally
evolved to different stages of tumor progression. The het-
erogeneity that exists within a single tumor requires not only
a simple binary distinction between normal and pathologic
tissue, but also the development of methods for the assess-
ment and segmentation of subregions, which may help im-
prove treatment planning and management.

Magnetic Resonance imaging is a capable of providing
more complete tissue coverage. A discriminating strategy
based on a single imaging modality however, is unable to uni-
versally differentiate normal from cancerous tissue, thus sug-
gesting the use of a multi-modal view of the tissue for clinical
assessment. The fusion of dissimilar imaging data for classifi-
cation and segmentation purposes is not a trivial task as there
is an inherent difference in information domains, dimension-
ality and scales [2].

Particularly interesting MR modalities for tissue charac-
terization are Dynamic Contrast Enhanced MRI (DCE-MRI),
that uses serial image acquisition after the intravenous injec-
tion of a contrast agent, and Diffusion Tensor Imaging (DTI-
MR), sensitive to the directionality of the microscopic diffu-
sion of water molecules in tissue. In DTI a diffusion tensor
(DT), a 3 × 3 positive-definite symmetric matrix, is calcu-
lated for each voxel from measurements in several directions
of diffusion-sensitized magnetic gradients. Each DT charac-
terizes the directionality and magnitude of the anisotropic dif-
fusion occurring in that particular voxel. Their mathematical
definition restricts the DTs to lie on a manifold in R6. Tissue
anisotropy and underlying geometry confine the local neigh-
boring tensors to a more restricted submanifold in R6 [3]. The
approach of writing 6 DT components as a feature vector is
hindered by the non-linear nature of DT. To address this prob-
lem, there have been attempts to use manifold learning tech-
niques such as ISOMAP [25]. Alternatively, kernel methods
for manifold learning in DTI were initially used in Ref. [9].

Here we present a methodology for the integration of
multi-modal MR images to an unsupervised segmentation of
tumoral lesions for heterogeneity assessment. It is often the
case that the objects to be clustered have multiple facets or
views, each conveying information belonging to a different
domain. In this work we extend this ’multi-view’ notion to
the calculation of multiple vectorial dissimilarity spaces for
each MRI modality, which are then clustered to produce a
set of base segmentations that are combined with a Cluster
Ensemble strategy into an unified partition of the voxel data.

Cluster Ensembles (CE) address the problem of combin-
ing multiple base clusterings of the same set of objects into
a single consolidated clustering [4]. Many clustering algo-
rithms can be used to generate base clusterings, however it is
desirable for them to have different biases, i.e. making dif-
ferent errors on new instances.The final partition is obtained
with a consensus function that maps the set of base clusterings
to an integrated final clustering [4].

To represent each MR modality in diverse spaces we re-
lied on the concepts behind dissimilarity based representa-
tions (DBR) [6] in which objects are characterized through
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pairwise dissimilarities instead of using an absolute charac-
terization by a set of features. Using a variety of established
metrics and distance functions we calculate several dissimi-
larity spaces for each MR modality. Kernel Principal Com-
ponent Analysis (KPCA) was used as a non-linear manifold
learning technique to address the geometric constraints of the
DT data [8, 7]. A key difference to the way KPCA was em-
ployed in Ref. [9], where it was used for statistical analysis
of groups using as input the 6 DT elements of each voxel or a
given neighborhood in the form of a vector, here KPCA pro-
cedure is performed using as inputs the dissimilarity spaces
calculated with the DT metrics that make use of the whole
tensor information.

2. MATERIALS AND METHODS

2.1. Overview

Fig. 1. The proposed multi-view methodology for cluster ensembles in
multi-modal MRI. The initial multi-modal volumes are spatially registered
(a), from each imaging volume an assortment of distance functions (dji ) is
chosen and used to calculate a set of dissimilarity spaces (Dj

i ) using voxel-
wise relationships (b), a set of different clustering algorithms (clust1,...,n)
are applied to each space and an ensemble of base clusterings (πj

i ) formed
(c), a consensus function combines the base partitions into a final unified
clustering (d).

The initial spatial registration problem between MRI
modalities is not covered here as it is the subject of a wide
variety of methods and frequently the strategy is problem-
dependent. First a Region of Interest (ROI) is delineated
around the detected lesion.Afterwards, the pairwise rela-
tionships between voxels in the ROI are calculated, creating
dissimilarity vectorial spaces by DBR. Following this, a set of
distinct clustering algorithms is used to partition each of the
derived spaces. From a single space and clustering algorithm

several base clusterings may be calculated.The labels from all
the calculated base clusterings are arranged in an ensemble
matrix which serves as input to a consensus function. This
function evaluates the relationships between all the datapoints
belonging to the diverse base clusterings and produces a uni-
fied similarity matrix which is later partitioned hierarchically
to obtain the final unified result (Fig. 1).

2.2. Data Representation in Derived Vectorial Spaces

A critical step in our methodology is the data representation
of each MRI modality in a diverse set of derived vectorial
spaces. These spaces emphasize certain views or aspects from
each MRI volume. A dissimilarity space is constructed as a
square matrix where every voxel is represented by a row vec-
tor calculated by the dissimilarities to each other voxel. Let
X = {x1, . . . , xn} be a voxel-based dataset. Given a dis-
similarity function, a data-dependent mapping D is defined
as D(·, R) : X → Dn linking X to a dissimilarity space [6].
Every object is described by an n-dimensional vector of dis-
tances between the object x and all the elements of X , such
that D(x,X) = [d(x, x1) . . . d(x, xn)]

T . The core concept
of this multi-view approach is to exploit the uniqueness and
commonality of these derived dissimilarity spaces into a uni-
fied consensus clustering methodology.

2.2.1. DTI-MR processing

The complexity of the DT data, belonging to a high dimen-
sional geometrical manifold structure, requires a careful se-
lection of methods that guarantee the correct use of the DT
information. We chose as a starting point two common scalar
measures, that is, the Fractional Anisotropy difference (dsFA)
and the Mean Diffusivity difference (dsMD). Even though
they reductionist, their widespread use makes them relevant
and well studied in a clinical context. Of more theoretical
utility are the measures that use the full tensor information.
Measures based on Riemannian geometry take into account
the constrain of the diffusion tensors to be positive definite.
We considered the geometric distance (dg) proposed in [17],
which belongs to this category and the Log-Euclidean metric
dLE , equivalent to the dL2 metric of the logarithm of the ten-
sors [18]. From the statistical category we included the dis-
tance function proposed in [19], (dKL), based on the square
root of the J-divergence (symmetrized Kullback-Leibler) be-
tween two Gaussian distributions corresponding to the diffu-
sion tensors being compared. Finally, the Frobenius distance
(dF ) and angular difference (dANG), although they ignore the
actual structure and dependencies among tensors, they are in-
cluded for evaluation considering their widespread use.

2.2.2. DCE-MRI processing

We developed a distance function DDCE [11, 12] based on
the adaptive dissimilarity index first proposed in [10]. For
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two voxel-derived perfusion curves S1 = (u1, . . . , up) and
S2 = (v1, . . . , vp), the complete distance function DDCE for
DCE-MRI derived perfusion curves is defined as follows:

DDCE(S1, S2) =
2

1 + exp(kDCECORT(S1, S2))
dH(S1, S2)

(1)
where S1 = (u1, . . . , up) and S2 = (v1, . . . , vp) are

two voxel-derived perfusion curves sampled at time instants
(t1, . . . , tp) [10]. CORT is the temporal correlation (Eq. 2)
and dH is the Hausdorff distance, which is used to measure
the value-based similarity between perfusion curves.

CORT(S1, S2) =∑p−1
i=1 (u(i+1) − ui)(v(i+1) − vi)√∑p−1

i=1 (u(i+1) − ui)2
√∑p−1

i=1 (v(i+1) − vi)2
(2)

In DDCE (Eq. 1) the parameter kDCE weights the rel-
ative contribution of both the value-based similarity and the
similarity with respect to their behavior, computed respec-
tively by dH and CORT (Eq. 2).

3. RESULTS

We first examine the performance of the cluster ensemble
method in simulated DTI data against segmentations based
on individual metrics. As a second investigation, we exam-
ine the multi-modal combination of DTI and DCE data in a
simulated tumour by way of different test cases.

3.1. Cluster Ensemble test with a syntehtic DTI dataset

The basis for the test consisted of a synthetic diffusion tensor
field (Figure 2) where two zones were created with different
orientations of the main eigenvector and a third one laid out
along a semi-circular arc. This poses the challenge of discern-
ing not only among diffusion characteristics but also requires
the structure of each zone be taken into account. The zones
composing the dataset were created to share certain diffusion
characteristics among some of them while differing with oth-
ers. The results are presented in Table 1. For most single met-
rics the use of KPCA as a manifold learning technique yielded
a better score in the evaluation indices. More importantly, the
use of our proposed ensemble methodology outperformed all
the results obtained through individual segmentations. The
test was repeated adding noise (SNR 14 and SNR 6) to the
simulated diffusion signal, the results obtained in both cases
outperformed the clusterings obtained by single metrics.

3.2. Tests with a synthetic multi-modal MRI model

We created a synthetic DTI-MR and DCE-MR dataset for val-
idation, composed of four main zones designed to simulate
the characteristics of white matter, vasogenic edema, infil-
trated fibers and central tumoral region (Figure 3). We relied

Fig. 2. Lay-out of the diverse zones that form the synthetic tensor field.
The column on the right shows the mean scalar parameters, FA and MD (in
mm2/s).

Method ARI RI CA

dsFA 0.46 0.88 0.67
dsFA+KPCA 0.62 0.89 0.75
dsMD 0.34 0.81 0.54
dsMD+KPCA 0.56 0.89 0.67
dANG 0.33 0.84 0.44
dANG+KPCA 0.34 0.84 0.44
dF 0.93 0.96 0.91
dF+KPCA 0.87 0.97 0.91
dg 0.87 0.97 0.91
dg+KPCA 0.87 0.97 0.90
dLE 0.87 0.97 0.91
dLE+KPCA 0.80 0.95 0.96
dKL 0.81 0.95 0.83
dKL+KPCA 0.98 0.98 0.99
DT components 0.74 0.94 0.84
DT components + KPCA 0.54 0.86 0.74

Cluster Ensemble 0.87 0.97 0.91
Cluster Ensemble + KPCA 1 1 1

Table 1. Evaluation of the methodology with a syntetic DTI dataset, using
single metrics and a Cluster Ensemble. The results are scored by means of
the Rand Index (RI), Adjusted Rand Index (ARI) and Classification Accuracy
(CA).

mainly on the measurements reported by [13, 22, 14]. Fur-
ther, three subzones were simulated in the white matter zone,
representing two differently oriented white matter tracts and
a mutual crossing zone. In creating a corresponding synthetic
DCE-MRI dataset functionally with the calculated diffusion
tensor field we relied on the segmentation of a real glioma
MRI volume from a pre-clinical mouse model acquired 35
days after inoculation with glioma cells. This model as-
sumes a relation between the DTI and DCE information in
co-registered voxels that might not exist in reality. However
for the purposes of an initial methodological validation this
presupposed relationship proves to be useful and valid.

3.3. Assessment

We hypothesized that for segmentation using our proposed
method, the use of base clusterings derived from metrics that
use the full DT information with manifold learning would
outperform segmentation based on simpler scalar desriptors
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Fig. 3. The different zones composing the synthetic DTI dataset (left).
Table with the mean Fractional Anisotropy (FA) and Mean Diffusivity (MD)
values for the corresponding zones (right).

of the DT data. Using the synthetic MRI dataset, distinct
vectorial dissimilarity spaces were calculated using the DT
metrics described in Sec. 2.2.1: dsFA, dsMD, dang , dF , dg ,
dLE , dKL. We included the 6 DT components as another
input vector for the kernel manifold learning processing and
subsequent clustering. The first fifty principal components of
the DTI-derived spaces were obtained by virtue of the KPCA
methodology using a Gaussian Kernel [8]. From the DCE-
MRI side, the corresponding dissimilarity spaces were ob-
tained using Eq. 1, varying the tuning parameter kDCE in
equation 1 from 1 to 5. For the cluster ensemble we used
three algorithms coming from different theoretical domains:
the classic K-means, Support Vector Clustering (SVC) and
clustering by Affinity Propagation (AP) [15, 16]. All the vec-
torial spaces were clustered with these algorithms to create a
set of base clusterings. The resulting cluster ensemble was
then used as input for the link-based consensus function [5].
The output similarity matrix was partitioned hierarchically,
after which the final partition was assessed. For our analysis,
we defined a set of test cases, as indicated in Table 2. The
results are presented in Table 3. As hypothesized, the case
using the DT metrics that make use of the full tensor infor-
mation and manifold learning scored the best in the evalua-
tion. In this case with manifold learning, our technique was
able to differentiate both white matter zones and their mu-
tual crossing area, a task where the other cases failed in vary-
ing degrees. It is worth noting the diverse results obtained
on the three different WM zones in both cases. When using
the Cluster Ensemble methodology without manifold learn-
ing the method is unable to differentiate the very subtle path
variations between the two simulated WM tracts. The use of
KPCA allows a finer discrimination based on the manifold to
which the tensors belong, in this case a circular and an ellip-
tical path, as well as the mutual crossing zone.

4. DISCUSSION

The creation of multiple vectorial spaces from each MRI
modality allows each metric to focus on a specific character-
istic or view of the multi-dimensional information conveyed
by the MRI data using a dissimilarity representation. Our
results show a consistent improvement in the assessment

Method dsFA dsMD dang dF dg dLE dKL DT elements

Case 1 x x x x x x x
Case 2 x x x x x x x x
Case 3 x x x x x x
Case 4 x x x x x x x
Case 5 x x x x x
Case 6 x x x x x x

Table 2. Definition of the diverse test cases used for evaluation of the
methodology with synthetic datasets.

Method CA RI ARI

Case 1 0.719 0.826 0.515
Case 1 KPCA 0.864 0.915 0.750
Case 2 0.6848 0.801 0.489
Case 2 KPCA 0.842 0.884 0.662
Case 3 0.7312 0.831 0.533
Case 3 KPCA 0.866 0.911 0.7398
Case 4 0.726 0.833 0.529
Case 4 KPCA 0.852 0.900 0.7080
Case 5 0.7352 0.837 0.543
Case 5 KPCA 0.910 0.925 0.8275
Case 6 0.7312 0.834 0.532
Case 6 KPCA 0.986 0.991 0.973

Table 3. Results of the evaluation performed with synthetic datasets. The
results are evaluated by means of the Classification Accuracy (AC), Rand
Index (RI) and Adjusted Rand Index (ARI).

scores when using KPCA as a manifold learning technique,
a consideration taken specifically to address the geometric
structure of the DT data. This outcome shows the importance
of including problem-specific knowledge in choosing the ap-
propriate set of metrics or dissimilarity functions. An obvious
drawback of this method is the computational cost of obtain-
ing the kernel matrix and the standard eigendecomposition in
KPCA, involving a time complexity ofO(n3). However, var-
ious optimization methods have been introduced for kernel
methods in general [33, 26, 27, 29] and specifically for KPCA
[30, 31, 32, 28]. As presented in Table 3, different combina-
tions of base segmentations derived from contrasting sets of
metrics and dissimilarity measures may lend themselves to
different results.The definition of a general method to choose
the appropriate metrics for different problems remains as an
open issue and is problem-dependent.

5. CONCLUSION

With this work we have demonstrated that the use of Con-
sensus Clustering techniques in multi-modal medical image
segmentations is a promising strategy for assessing the het-
erogeneity of tumoral regions. Although the choice of the
appropriate metrics is problem-dependent and requires fur-
ther research, our method circumvents some the problems that
arise when combining metrics into a single vectorial space or
in multiple kernel learning strategies, such as the weighting
decision for each individual component [34, 12].
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