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ABSTRACT

We present a novel view of the hull detection problem in two

dimensions. Our proposed method is based on the principle

of finding Pareto optimal boundaries and extends it to the gen-

eral problem of finding a hull for a given set of points. We first

compute the largest empty sector angle (LESA) score for each

point. The desired hull can then be obtained as a super-level

set of this score. We show how the proposed representation

is related to a convex hull and demonstrate the flexibility it

provides in choosing the geometry of the hull. As a target

application we also present a head movement correction tech-

nique for real-time MR images of the dynamic vocal tract.

Index Terms— 2D hull detection, exterior point, convex

hull, largest empty sector angle, MR image analysis

1. INTRODUCTION

The problem of hull detection for a set of points X =
{x1, x2, . . . , xn} is defined as finding a subset H ⊆ X of

these points, such that the the polygon defined by the points

in H contains all the points in X. Different algorithms for

hull detection can be categorized by the criteria they impose

on the hull. For example, convex hull detection algorithms

[1, 2, 3, 4, 5] popular in mathematics and computational ge-

ometry, require that H be the smallest convex set of points

such that all points in X are contained in its convex hull.

Convex hulls are preferred for their robustness in applications

where precise boundary contours are not required [6, 7].

Although convex hulls for a given set of points can be

computed in worst-case O(nlog n) time [8] they might not

suitable for certain other tasks. For example, in contour based

shape matching the detected boundaries need to closely re-

semble the original shape of the object [9]. Non-convex hull

detection algorithms [10, 11] have been proposed to find the

“footprint” or area covered by a set of points in this case.

These algorithms extend the Jarvis’ March or gift-wrapping

method [1] used for convex hull finding.

Several techniques have also been previously suggested

for the task of boundary detection from images. In [12] the

authors proposed to use statistical shape models to ensure

smoothness in the object boundaries. Active contours or

snakes [13] pose the problem as an energy minimization task,

where external energy results from incorrect alignment of the

contours and internal energy depends on its conformation.

Weighting the internal energy lower makes the contours more

deformable such that it fits the edges and lines better, while

a higher internal energy acts as a smoothness constraint. The

technique proposed in this paper, instead of directly finding

an exact hull, computes an intermediate representation which

can then be used to generate a hull with the desired geom-

etry. We generalize the notion of a Pareto optimal frontier

popular in the field of multi-objective optimization to find the

boundary points ofX.

Specifically, for each point in X we find the angles cor-

responding to the largest empty sector (LESA) around that

point. We denote this angle for each point x as δ(x). The

intuition here is that for points lying on the boundary of X,

δ(x) should be larger compared to points in the interior and

would ideally correspond to the exterior angles of the required

hull. We illustrate properties of the super-level set Hθ =
{x|δ(x) ≥ θ, x ∈ X} and show that the proposed representa-

tion is directly related to convex hulls. By choosing different

super-level sets Hθ we can directly control the convexity of

the generated hull. We show that the convex hull is obtained

for the θ = 180◦ super-level set, while choosing larger val-

ues of θ allows us to choose sharp points of interest on the

boundary. As a target application, the proposed method is ap-

plied to real-time MR images of the human vocal tract [14]

where they are used to detect sharp points on the silhouette of

the face. This is used to track the position of the nosetip and

chin in each frame, which can be in turn used to estimate and

correct for any head movements in the data.

The algorithm for finding the largest empty sector angle

is presented in Section 2. Section 3 establishes the relation

between the proposed representation and finding Pareto op-

timal solutions and shows that the latter is special case. In

Section 4 we discuss about the geometry of different super-

level sets of δ(x) through examples. Relation of the proposed
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representation with convex hulls is established. In Section 5

we present an application of the proposed representation for

head movement correction in real time MR images. A brief

summary of the proposed techniques and future directions are

finally presented in Section 6.

2. FINDING THE LARGEST EMPTY SECTOR

ANGLE

As a measure of whether a point lies on the boundary of a

given set of points X, we propose the following metric. We

find the largest angular gap around each point which does not

contain any of the other points (Fig. 1). The intuition is that

points on the boundary will have larger empty sectors com-

pared to the points in the interior. In this section, we describe

the algorithm to find the largest empty sector angle (LESA)

around each point. In the next section, we show how finding

Pareto optimal points is a special case of this idea.

Without loss of generality let us assume that the origin is

shifted to the current point of interest xk i.e. Y = {x1 −
xk, x2 − xk, . . . , xn−1 − xk}. Further, let θi be the angle

each point yi subtends on the positive half of the x-axis mea-

sured in the counter-clockwise direction. Then the problem

of finding the LESA, is equivalent to solving the problem

max
α,β

δ = |α− β|

s.t. (θi − α)(θi − β) ≥ 0, ∀i = 1 . . . n− 1
(1)

where the angles α, β define the position of the largest

empty sector.

It can be proved by contradiction that the optimalα∗, β∗ ∈
{θ1, . . . , θn}. This restricts the search space allowing the use
of an efficient algorithm to find the solutions. The algorithm

is described below in Algorithm 1.

Input: Set of pointsY = {y1, . . . , yn−1}
Output: The largest empty sector angle δ about the

origin

1: Compute the counter-clockwise angle subtended

by each point in Y on the x-axis.

2: Sort the angles in ascending order as θ1, . . . θn−1

3: Calculate their first order difference

φi = θi+1 − θi for i = 1, . . . , n− 2
4: δ = maxn−2

i=1
φi

Algorithm 1: An algorithm for estimating the largest

empty sector angle (δ)

Fig.2 shows an illustrative example of the LESA δ scores

for a set of points. These points were detected by using the

Canny edge detection algorithm on an MR image of the vocal

tract. The obtained δ scores match the intuition that the exte-

rior points have a higher score compared to the points in the
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Fig. 1. The largest empty sector (shaded cyan) for one of

the points (in the red circle) corresponding to the given set of

points. The largest empty sector is bounded by angles α, β

and subtends angle δ on the point.

interior. Moreover, points at the “corners” of the hull have the

highest LESA scores. These MR images are formally intro-

duced later in Section 5 when we propose an application for

the analysis of realtime MRI sequences. Hence, we use this

image as a running example throughout this paper.
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Fig. 2. Figure on the left shows the points detected by the

Canny edge detector [15]. Right figure shows the LESA (δ)

scores for the points. The LESA scores are higher for points

on the exterior.

3. RELATION TO PARETO OPTIMAL BOUNDARIES

In this section, we show how finding the Pareto optimal

boundary for a given set of points can be considered to be

a special case of the empty sector angle representation de-

scribed above. The notion of Pareto efficiency is useful in

multi-objective optimization problems where it helps select

candidate solutions at the boundary of a tradeoff / ROC curve.

Specifically, for two objective functions f(t), g(t) for a solu-
tion t, that are being traded off against each other, according

to Pareto efficiency, a solution t1 is said to be more efficient

than t2 iff, f(t1) < f(t2) and g(t1) < g(t2). This minimal

notion of efficiency then allows us to define Pareto optimal

points as follows.
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Fig. 3. Pareto optimal solutions for a multi-objective mini-

mization problem. Blue crosses indicate candidate solutions

for the optimization problem.

Definition 1. A solution t is Pareto optimal for objective func-

tions f, g iff 6 ∃s s.t. f(s) < f(t), g(s) < g(t)

Fig.3 illustrates Pareto optimality in the context of a dual

objective minimization problem. Note that the set of pareto-

optimal points gives their “left-bottom” boundary. Geometri-

cally, it means that a solution that is Pareto-optimal for a dual

objective minimization problem, must have an empty third

quadrant when the origin is shifted to that point. Note, that if

we change each optimization problem to maximization/ min-

imization we alter the geometric requirement to other quad-

rants and can find extremal points in other directions. Each

of these four optimization problems can be viewed as special

cases of finding the points with largest empty sector angle

δ ≥ 90◦ and α = 0◦, 90◦, 180◦, 270◦. Computing the LESA

δ for each point inX allows us to generalize the problemwith

respect to the angle and orientation of the sectors, thereby pro-

viding a control on the shape of hull boundary.

4. GEOMETRY OF THE HULL

In the previous section we established the relation between

LESA scores and Pareto optimal points. In this section we

examine how LESA scores can be used to control the geom-

etry of the hull. To better interpret the LESA scores, in Fig.4

we show the hulls obtained by the super-level setsHθ for dif-

ferent angles θ. Note that the hull obtained by thresholding

δ ≥ 180◦ closely resembles its convex hull. It can be in fact

shown that Hπ = {x | δ(x) ≥ 180◦, x ∈ X} is the convex
hull by use of the supporting hyperplane theoremwhich states

that if S is a closed set with non-empty interior such that for

each point x0 on its boundary there exists a supporting hyper-

plane, then S is a convex set.

δ(x) ≥ 180◦ is equivalent to the statement that a support-

ing hyperplane/ tangent exists at that point x. This ensures

that the set Hπ is convex. Additionally, we observe that Hπ
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Fig. 4. The super-level sets obtained for different thresholds.

Note δ ≥ 180◦ gives a convex hull. For thresholds> 180◦ the
polygon does not enclose all the points.

corresponds to the smallest such convex set making it the con-

vex hull.

As the value of the threshold θ is decreased below 180◦

the resulting hull is increasingly concave, as can be seen by

the inclusion of the nose bridge in the MR image while going

from δ ≥ 150◦ to δ ≥ 120◦. A higher threshold on δ on the

other hand highlights the corners and sharper points on the

boundary which is an important problem in many tasks.

In this paper, we apply the proposed hull detection ap-

proach to the analysis of real time magnetic resonance im-

ages. In particular, using the landmark detection afforded by

this proposed method, we perform head motion correction in

the acquired image sequences as described in the next section.

5. HEAD MOVEMENT TRACKING AND

CORRECTION IN REAL-TIME MR IMAGE

SEQUENCES

Real-time Magnetic Resonance Imaging (rtMRI) [16] cap-

tures the moving vocal tract during speech production and

swallowing activities and hence serves as an invaluable tool

for researchers studying speech production and other clinical

applications such as swallowing disorders. The hull detection

proposed in this paper can be useful in analyzing the MRI

sequences.

One of the key problems is the subject’s head motion dur-

ing image acquisition that renders subsequent analyses diffi-

cult. Generally there are no fiducial reference markers avail-

able for this purpose, and hence reliance on anatomical land-

marks is common. We describe a reference point (landmark)

based head motion correction technique. The target land-

marks are the nosetip and chin for this purpose. We use the δ
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Fig. 5. Nosetip and chin detection and tracking

scores for locating the position of nosetip and chin in the MR

image. These two points are then tracked over time, to obtain

an estimation of the rotation and translation for each frame.

As shown in Fig.4 higher values of δ typically correspond

to larger exterior angles and hence sharp points on the bound-

ary. Since the nosetip and chin are two sharp features on the

boundary, this fact can be exploited to locate their position in

these MR images (Fig.5). Our method is similar to the con-

vex hull based finger-tip tracking technique proposed in [6, 7].

However, instead of convex hulls we use the proposed LESA

representation which allows us to fit a custom hull (Fig. 6)

suited for this purpose letting us robustly locate the landmark

points. The approach is summarized in Algorithm 2.

Input: LESA scores δ for all edge points x1, . . . , xn

Output: Position of the nosetip n(t) and chin c(t) at
time t

1: Only retain the sharp points for which δ ≥ δth.

Suppose there are k remaining points.

2: Compute the center xsh for the remaining points

3: Sort the points x1, . . . , xk according to the angle

subtended by (x1 − xsh) in a counterclockwise

direction.

4: n(t)← x1

5: c(t)← xk

Algorithm 2: Algorithm for detecting nosetip and chin

in rtMRI images

The nosetip and chin detection scheme is illustrated in

Fig.6. For our experiments a threshold value of δth = 195◦

was used in Algorithm 2.

The rotation and translation are estimated by assuming the

nosetip to be the center of rotation. All subsequent frames are

rotated and aligned with respect to the first frame. To cor-

rect the movement in a frame it is first translated such that

the nosetips are aligned. Then the image is rotated about the

nosetip by the estimated angle of rotation. Fig.7 shows a sam-

ple head motion corrected frame.
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Fig. 6. Selecting the nosetip and chin position by ordering the

“sharp” points in a counter-clockwise fashion. Number next

to each vertex indicates the sorting index.

6. CONCLUSION

We presented a largest empty sector angle (LESA) represen-

tation for a set of points which can be used to generate a hull

with the desired geometry. We show that the convexity of the

generated hull can be parametrized by choosing the appropri-

ate super-level set Hθ. In the special case θ = 180◦ a convex
hull is obtained. For larger θ, Hθ comprises of sharp points

on the boundary of X. We apply this method for the analy-

sis of realtime MR image (rtMRI) sequences. In particular,

we focus on the problem of tracking and correcting for head

movement during image acquisitions. Specifically, we exploit

the ability of the proposed algorithm to detect sharp points for

finding the nosetip and chin in rtMRI images and propose a

technique for robust head movement correction.

Future work should consider extending this method for

hull finding in higher dimensions. Additionally, an extension

to grayscale 2D images might allow us to do away with the

initial segmentation. Finally, we would also like to evaluate

the proposed method on contour based shape matching ap-

plications by allowing for custom degrees of convexity in the

hull finding.
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Fig. 7. a) The first frame b) The current image frame showing

head movement c) Current image frame motion corrected to

align with the first frame
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