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ABSTRACT

Block-matching and 3D filtering (BM3D) has shown a great

success in image denoising. In this work we propose a new

denoising approach for Magnetic Resonance Imaging (MRI)

based on a modified BM3D algorithm. BM3D is a com-

bination of nonlocal approach, 3D wavelet shrinkage, and

3D Wiener filtering. We improve the wavelet thresholding

stage of BM3D using Noise Invalidation Denoising (NIDe)

technique. The new approach provides the optimum wavelet

threshold automatically and adaptive to the statistical char-

acteristics of the available data. This is an advantage over

the existing denoising stage of BM3D that currently uses an

adhoc thresholding value. Combining the proposed BM3D

approach with Variance Stabilization Transformation (VST)

enables the use of the proposed method for Magnetic Reso-

nance (MR) Image denoising. In our Simulations, the pro-

posed method outperforms the state of the art BM3D based

MRI denoising methods in the sense of PSNR and SSIM for

T1, T2 and PD weighted MR images.

Index Terms— BM3D filtering, Magnetic Resonance

Imaging, Variance Stabilization Transformation, Wavelet

Transform Function, Noise Invalidation Denoising

1. INTRODUCTION

MRI is one of the most effective imaging modalities that has

been used for soft tissue imaging, such as brain and muscles.

Since the acquisition time in MRI is limited, the signal to

noise ratio (SNR) of the MR images are usually low. The

quality of the MRI images are usually degraded with several

artifact and noises that is adequately modeled Rician noise.

Under the Rician noise model, the observed MR image in-

tensities are non-linear function of the true image intensities,

which adds a bias to the images denoised by conventional de-

noising methods. Consequently, a denoising technique that

removes noise while preserves the image details is an impor-

tant step of MR image processing. MRI denoising is the focus

of many researches to provide images with both good spa-

tial resolution and high SNR. Several filtering methods have

been developed in the past decades to address denoising prob-

lem in MRI images. Anisotropic Diffusion filter for MR im-

ages keeps edges by averaging pixels in the orthogonal di-

mension of the local gradient [1]. However, it still eliminates

small features and generates unnatural images by altering im-

age statistics [2]. Recent methods focus on Non-Local Mean

filtering (NLM) [3]. NLM takes advantage of repeated struc-

tures in natural images and uses a weighted averaging method

based on the similarities between different neighborhoods in

the image. Since its introduction, NLM has been modified to

be compatible with MR images [2], to be applicable for spe-

cific applications with spatially varying noise levels [4], and

to be more efficient [5]. Another common class of MR image

denoising methods is domain transform filters. These filters

are applied to the image data transformed in another domain.

Examples of such methods are wavelet domain filtering on

the complex valued data with Gaussian additive noise [6] or

on Rician distributed magnitude data [7, 8], Principal Com-

ponent Analysis (PCA) [9] and Discrete Cosine Transform

(DCT) filters[10]. These methods still remove some detailed

information and create artifacts. BM3D filtering was intro-

duced as an extension to NLM and wavelet domain transform

filtering [11, 12]. It is an improved version of NLM filtering

that groups similar patches in 3D stacks, transforms them in

another domain, shrinks the coefficients and returns them into

the original domain by inverse transformation. Applying the

transformation on the grouped similar patches considerably

increases the sparsity of the data compared to the use of origi-

nal image. Therefore, the denoising method can attenuate the

noise easier and more effectively. BM3D denoising method

has demonstrated advantages in denoising images with ad-

ditive Gaussian noise [12, 13, 14]. It has also been applied

to MR images and represented competitive results comparing

to the existing methods [15, 16, 17]. The goal in BM3D is

to denoise the 3D stacks of similar patches with Wiener fil-

ter. However, Wiener filtering requires prior estimate of the

patches. This estimate is found in the first stage of BM3D that

applies a 3D wavelet hard thresholding on the stacks of sim-

ilar patches formed by the noisy image. This first stage esti-

mation is then used in the second block matching, which finds

the similar patches for the Wiener filtering stage. Optimal use

of BM3D requires adjustment of some parameters, including

the threshold value used in the first denoising step. Currently,

the value of this threshold is found on the basis of heuristic

search approach [12]. Here we propose using our newly pro-

posed Noise Invalidation Denoising (NIDe) method instead of
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the hard thresholding. Unlike the current adhoc hard thresh-

olding, the new approach denoises the data adaptive to the

available noisy image. The optimum value of threshold in the

latter approach adapts to the data itself and is found automat-

ically [18]. Application of the BM3D denoising approach in

MRI denoising is possible by preprocessing the image with

a variance stabilization approach [16, 17], which stabilizes

the noise variance1 in the Rician distributed MR image. The

performance of the proposed method in denoising the MR im-

ages is compared with state of the art BM3D approaches used

for MR images using VST [17] and using a bias correction

algorithm [15]. Our simulation results illustrate superiority

of the proposed method over the existing ones in improving

the PSNR and having a better SSIM. The paper is organized

as follows: Section 2 briefly reviews the BM3D approach and

elaborates on the role of wavelet denoising in the first stage.

Section 3 proposes alternative adaptive denoising approach

for the first stage and implements the new method for MRI

denoising. Simulation results are provided in Section 4, and

finally Section 5 includes the concluding remarks.

2. BM3D AND DENOISING STAGE

Let Y = {y (x) |x ∈ Ω} be a greyscale image defined in a

spatial domain Ω ⊂ R
2 where x is the coordinate of each

pixel in the image. This image is corrupted with an additive

Gaussian noise w that has a zero mean and variance of σ2.

The noisy image y can be represented as:

y (x) = y (x) + w (x) (1)

Image denoising goal is to eliminate the effects of w(x) as

much as possible. BM3D [11] is one of the state of art de-

noising methods. BM3D is composed of two major filtering

steps as shown in Figure 1. In both stages collaborative filter-

ing is utilized. Collaborative filtering itself has four stages:

1) grouping similar patches with a reference patch, 2) 3D

wavelet transformation of each stack of patches, 3) denois-

ing the wavelet coefficients (thresholding or Wiener filtering)

and 4) inverse 3D transformation. BM3D aims to denoise the

patches by Wiener filter, which is done in step 2. This requires

a reliable block matching to select the similar patches. This

is the main purpose of using hard thresholding in the first step

to find the best initial estimate of the noiseless image, which

is used in the second stage to select the best patches for the

Wiener filtering. The input of the thresholding block is the 3D

noisy wavelet coefficients of the similar patches located by

block matching applied to the available noisy image. The de-

noising stage of the first step denoises the following wavelet

coefficients of the image:

θ (x) = θ̄ (x) + v (x) (2)

1A Matlab implementation of VST is available by its author(s) on

http://www.cs.tut.fi/∼foi/RiceOptVST/#ref
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Fig. 1. Schematic representation of conventional BM3D hard

thresholding (BM3D-HT).

where θ̄ (x) and v (x) are noiseless and noisy coefficients, re-

spectively. This stage conventionally uses hard thresholding

with a threshold value of 2.7σ, found heuristically in [12].

The resulted denoised coefficients ˆ̄θ are then transformed

back to spatial domain ˆ̄y to be used as initial estimates of the

noiseless data in calculation of the Wiener filter coefficients.

Due to the use of Hard thresholding in the first stage, we

denote the conventional BM3D as (BM3D-HT).

3. BM3D AND PROPOSED ADAPTIVE DENOISING
STAGE (NIDE)

We propose a new adaptive wavelet thresholding method to

be used in the first step of BM3D, in which the threshold is

conventionally found and optimized based on a trial and error

method on a dozen of samples. Here we replace this criti-

cal stage with Noise Invalidation Denoising (NIDe) method,

a recently developed algorithm that finds its optimum thresh-

old based on the data and noise characteristics. NIDe relies

on statistical analysis of the sorted version of the noisy signal.

The denoising procedure discards part of the signal that fol-

lows the statistics associated with the additive noise. Lets de-

note the sorted version (in ascending order) of absolute value

of θ coefficients in (2) as z:

θ → z (3)

It has been shown in [18] that noisy part of z, denoted by nz

has the following expected value and variance:

E (nz) = F (nz) (4)

var (nz) =
1

N
F (nz) (1− F (nz)) (5)

where F (·) is the available cumulative distribution function

of the Gaussian additive noise v in (2) and N is the num-

ber of pixels. The variance of nz is much smaller than its

expected value and it has been shown in [18] that nz can

serve as a unique noise signature for the purpose of invali-

dation, i.e. any coefficient of z that is inside the confidence

boundary of E (nz) ± λ
√
var (nz) is noise and will be dis-

carded. The value of λ is chosen based on the probabilistic
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Fig. 2. NIDe process: blue lines indicate the boundaries for the

noise confidence area while the red line indicates the sorted absolute

value of the signal.

confidence of the normal distribution CDF. For example, the

choice of λ = 3 is known to provide a 99.9% probabilistic

confidence. Figure 2 shows an example of how NIDe works.

The bounded area between two dashed blue lines is known as

the noise confidence area. The sorted absolute value of the

wavelet coefficients of the noisy signal are compared to the

noise confidence area. Any value that is in the noise confi-

dence area is considered to be the Gaussian noise and should

be discarded.

3.1. BM3D-NIDe in MRI Denoising

The noise boundaries in NIDe are defined based on addi-

tive Gaussian noise assumption, while the Rician noise in-

volved in the observed MRI images does not match to the

zero mean and additive structure assumed in conventional de-

noising methods. In addition, MRI noise level has a nonlinear

dependency on the image intensity. Due to this nonlinearity,

many conventional image denoising techniques that are pro-

posed for homoscedastic additive noises, including the BM3D

method, would result in biased estimates of the true image if

they are applied directly to a MRI image [4, 10, 19, 20]. The

magnitude of this bias depends on the observed image inten-

sities such that the bias would be larger at the points with

smaller image intensities. This causes the image contrast of

the denoised image to be be low [16]. To be able to use the

conventional state of the art denoising methods on the MRI

images, two approaches have been proposed in the literatures:

1) using bias reduction methods [15] and 2) using Variation

Stabilization Transformation (VST) [17]. The first approach

concentrates on bias reduction only and can not accommodate

the Rician structure of noise and is a postprocessing method

(used after BM3D only to reduce the bias term). On the other

hand, VST based methods not only compensates the denoised

image by reducing the bias, but also transforms the Rician

structure to Gaussian by variance stabilization. Variance sta-

bilization removes the dependency of the noise variance on

the MRI image intensities before denoising, which makes the

conventional denoising methods, like BM3D, applicable on

the transformed images [17]. Therefore, we apply NIDe on

MRI images using the VST approach to stabilize the noise

variance. BM3D-NIDe denoising method is applied to the

MRI images using VST (BM3D-NIDe-VST) with the follow-

ing three steps: 1) a variance stabilization transform is ap-

plied to the MRI image, so it can be treated as a homoscedas-

tic additive Gaussian noise; 2) BM3D-NIDe is employed on

the transformed data; and 3) data will be returned to its ini-

tial status by applying a corresponding exact unbiased inverse

transformations. The schematic of the proposed method is

depicted in Figure 3.
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Fig. 3. Schematic of the proposed BM3D-NIDe method

4. SIMULATION RESULTS

For simulations, data from Brainweb database [21] is used.

The data consist of T1, T2, and PD weighted MRI images of

normal brain with resolution of 217 × 181. The parameters

for BM3D-HT are chosen based on the optimized values pro-

posed in [12] and are as follows: size of the patches k = 7,

search window n = 17, maximum number of patches in each

group for step 1 is N = 16, and for step 2 is N = 32. Dis-

tance threshold to find similar patches for σ ≤ 40 (σ > 40)

is τ1 = 2500 (τ1 = 5000) in block matching of step 1, for

σ ≤ 40 (σ > 40), τ2 = 400 (τ2 = 3500) used in block match-

ing of step 2. Here, we compare the state of the art BM3D-HT

MRI denoising methods using variance stabilization (BM3D-

HT-VST) [17] and Bias Correction (BM3D-HT-BC) [15] with

our proposed algorithm (BM3D-NIDe-VST), shown in Fig-

ure 3. Figure 4 shows the denoising results for T1, T2 and

PD weighted MRI images with the three compared methods,

when the noise level is 11%. For the purpose of evaluation,

Peak Signal to Noise Ratio (PSNR) and Structural Similarity
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Noise Level 3% 5% 9% 11% 13% 15% 17%

T1 Input PSNR 29.82 25.27 20.10 18.35 16.90 15.65 14.56

BM3D-HT-VST (T1) 34.44/0.93 31.53/0.88 28.42/ 0.80 27.35/0.76 26.45/0.72 25.64/0.69 24.89/0.65

BM3D-HT-BC (T1) 34.41/0.908 31.49/0.84 28.41/0.75 27.31/0.71 26.46/0.67 25.66/0.64 25.07/0.62

BM3D-NIDe-VST (T1) 34.77/0.93 31.86/0.89 28.80/0.81 27.78/0.77 26.91/0.74 26.15/0.71 25.45/0.69
T2 Input PSNR 30.09 25.57 20.40 18.64 17.19 15.94 14.84

BM3D-HT-VST (T2) 33.46/0.95 30.10/0.90 26.40/0.81 25.15/0.77 24.11/0.74 23.24/0.70 22.47/0.67

BM3D-HT-BC (T2) 33.42/0.94 30.20/0.90 26.43/0.82 25.20/0.78 24.16/0.74 23.22/0.70 22.56/0.67

BM3D-NIDe-VST (T2) 33.65/0.95 30.25/0.90 26.52/0.82 25.25/0.78 24.20/0.75 23.31/0.71 22.60/0.68
PD Input PSNR 30.10 25.58 20.35 18.56 17.07 15.80 14.69

BM3D-HT-VST (PD) 35.28/0.94 32.17/0.89 28.80/0.78 27.71/0.74 26.81/0.70 26.03/0.67 25.36/0.64

BM3D-HT-BC (PD) 35.21/0.93 32.14/0.88 28.75/0.79 27.61/0.75 26.63/0.71 25.74/0.67 25.18/0.64

BM3D-NIDe-VST (PD) 35.41/0.94 32.23/0.89 28.91/0.79 27.87/0.75 27.00/0.71 26.26/0.68 25.60/0.66

Table 1. Comparison Table of PSNR/SSIM values for different noise levels on T1, T2, and PD weighted MRI image

Fig. 4. MRI image denoising when the noise level is 11%. The first

column is T1 weighted, the second column is T2 weighted, and third

column is PD weighted images. Row one is the noiseless image,

second row is the noisy image. Third row, forth row, fifth row are the

denoised images with BM3D-HT-VST, BM3D-HT-BC, and BM3D-

NIDe-VST respectively.

Index (SSIM) [22] 2 are calculated for each method. Table 1

2A Matlab implementation is available online by its author(s) at

https://ece.uwaterloo.ca/∼z70wang/research/ssim/

shows PSNR/SSIM values with noise levels from 3% to 17%

for the three types of T1, T2 and PD weighted images. The re-

sults demonstrate that the proposed approach performs better

than the existing approaches in all the cases. As table 1 illus-

trates BM3D-NIDe-VST method seems to be more robust to

increase of the noise variance.

5. CONCLUSION

A new denoising method was proposed for MRI that is based

on the state of the art BM3D denoising approach. The per-

formance of BM3D was improved by using NIDe denoising

method, which improved the wavelet thresholding of the first

step compared to heuristic threshold search used in the orig-

inal work. It is known that the complicated nature of noise

in MR images makes the use of conventional denoising meth-

ods impossible. Combination of the new BM3D approach and

variance stabilization transform (VST) provided an efficient

MR image denoising approach. The proposed method, de-

noted by BM3D-NIDe-VST, was compared with two recently

proposed BM3D based MRI denoising techniques. The re-

sults demonstrate advantages of the proposed method over the

existing ones.
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