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ABSTRACT

In Direct Volume Rendering (DVR), the Transfer Function

(TF) to map voxel values to color and opacity values is dif-

ficult to obtain. Existing TF design tools are complex and

non-intuitive for the end user, who is more likely to be a med-

ical professional than an expert in image processing. In this

paper, we propose a volume visualization method where the

user directly works on the volume data to simply select the

parts he/she would like to visualize. The user’s work is further

simplified by presenting only the most informative volume

slices for selection. Based on the selected parts, all the voxels

are classified using our Sparse Nonparametric Support Vec-

tor Machine (SN-SVM) classifier, which combines both local

and near-global distributional information of the training data

to obtain accurate results. The voxel classes are then mapped

to color and opacity values using the concept of harmonic col-

ors, which provides easily distinguishable and aesthetically

pleasing results. Experimental results on several benchmark

datasets show the effectiveness of the proposed method.

Index Terms— Volume Visualization, Medical Imaging,

Classification, SVM, Color Harmonization

1. INTRODUCTION

Direct Volume Rendering (DVR) is a technique to reveal in-

teresting structures and regions from raw 3D imaging data,

typically obtained through popular medical imaging proce-

dures such as Magnetic Resonance Imaging (MRI) and Com-

puted Tomography (CT) [1]. DVR makes use of a Transfer

Function (TF), which maps one or more features extracted

from the data (the feature space) to different optical proper-

ties such as color and opacity. The TF design is typically a

user-controlled process, where the user interacts with differ-

ent widgets (usually representing feature clusters or 1D/2D

histograms) to manually set color and opacity properties to

the feature space. In case of clusering-based TF design, the

user can control some low-level properties like number of

clusters, cluster variance etc. Most of the recently proposed

DVR methodologies [1, 2, 3, 4] are based on these basics.

However, interacting with the feature space is difficult for

the end-user, who may not have any knowledge about image
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processing or clustering. Multi-dimensional feature spaces

can not represent distinguishable properties such as peaks and

valleys which are important for proper TF generation from

histogram [5]. Also, these kind of widgets try to represent the

feature space directly, putting a strict restriction on the type

of features used and the dimensionality.

In this paper, we propose a rather direct approach to sim-

plify the process of volume visualization. Instead of working

with complex widgets for histogram or cluster manipulation,

the user simply works on the volume data itself. The user is

presented with grayscale form of some slices from the volume

data, where he/she can do simple selection on voxels to ex-

press his/her intention of how the volume should be classified.

To further simplify the process, we carefully pick the most

representative slices from the volume and only show those to

the user. The slices are picked by sorting them based on image

entropy, which provides a measure of information present in

one slice [6]. Once the user selection is completed, we treat

the selected voxels as training data and extract some high-

dimensional features. A recently proposed Sparse Nonpara-

metric Support Vector Machine (SN-SVM) [7] is then used to

classify the whole volume. This approach combines the lo-

cal information available through support vectors [8] and the

near-global information available through Kernel Nonpara-

metric Discriminant (KND) [9] to provide an accurate high-

dimensional classification. Due to the robustness of the clas-

sifier, only a small number of training samples can provide

excellent results, as we will see from the experiments. Af-

ter the voxel classification, the classes are mapped to different

color and opacity values automatically by using the concept

of color harmonization [10], which can generate easily distin-

guishable and aesthetically pleasing visualization of the un-

derlying classes.

2. RELATED WORK

TF design for volume rendering has been a matter of intense

research since the first 1D TF mapping voxel intensity values

to color and opacity was published in [11]. The first 2D TF

was proposed in [1], where the intensity and gradient magni-

tude were used to build a 2D histogram. The user manually

assigns different color and opacity values by observing the
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histogram. Since then, several similar methods have been pro-

posed, where the histogram is calculated based on different

measures, such as LH values [12], curvature measurements

[13], structure size [14] etc.

The problem with histogram-based TF generation is that

the method is restricted to use low-dimensional (typically

upto 2D) features, since the feature space is represented

directly with the histogram. Moreover, due to the interdis-

ciplinary use of volume rendering, end-users may not have

deep understanding of image processing techniques i.e. his-

tograms. Some recent methods try to use various clustering

and classification techniques to remedy this problem, such

as kernel density estimation [5], mean-shift clustering and

hierarchical clustering [2] etc.

Even with these methods, the end user will still have

to manipulate low level cluster parameters and assign the

color and opacity values manually. Our proposed method

approaches the problem from an image-centric viewpoint

[15, 16], where the user directly performs operations on the

most informative volume slices rather than on histograms or

cluster visualizations. We also automate the color and opacity

assignment based on color harmonization and user’s percep-

tion. As a result, the user can focus on the interpretation of

the result rather than manipulating complex interfaces.

3. PROPOSED METHOD
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Fig. 1. System diagram for the proposed method.

Figure 1 shows the high level system diagram for the pro-

posed method. As can be seen, the most informative slices

of the volume are extracted and presented to the user. The

user selects voxels and assigns them in different classes based

on what he/she wants to see. Features are extracted from the

voxels and used as training data for the proposed SN-SVM

classification. The voxel classes are then assigned different

color and opacity values based on color harmonization. The

various modules of the proposed method are described in the

next sections.

3.1. Slice Extraction

Since the user will perform selection operations on volume

slices, we need to provide the user with the most informa-

tive slices. A typical volume can have thousands of slices

(along X, Y or Z direction). We need to provide the user

with the slices that contain the most variation, since we can

safely assume that these slices will contain all the structures

that the user might be interested in [6]. For this, we calculate

the image entropy of each slice. In general, for a set of M

symbols with probabilities p1, p2, . . . , pM the entropy can be

calculated as follows [6]:

H = −

M
∑

i=1

pi log pi. (1)

For an image (a single slice), the entropy can be similarly
calculated from the histogram [6]. The entropy provides a

measure of variation in a slice. Hence, if we sort the slices in

terms of entropy in descending order, the slices with the high-

est entropy values can be considered as representative slices.

3.2. User Input

Class 1

Class 2

Class 3

Fig. 2. The GUI with extracted slices. The red, green and

blue selections (circles) by the user refer to voxels assigned

to Class 1, Class 2, and Class 3, respectively.

The user is presented with a GUI (Figure 2), which shows

the three slices with highest entropy values in X, Y and Z

direction. The user can then select different voxels and as-

sign them to different classes, which will be treated as train-

ing data for the next steps in the method. As we can see from

Figure 2, the regions assigned to different classes by the user

are marked with different colors. The dataset shown here is

the Foot CT (details can be found in Section 4). The objec-

tive is to roughly separate the bones (Class 1), joints (Class

2), and the outer layer (Class 3) of the Foot. Please note that

although the number of training voxels seems small, our pro-

posed SN-SVM classification method can classify the whole

volume from a small training set reliably by combining both

local and near-global distributional information [7].

3.3. Feature Extraction

Unlike histogram-based methods, our approach does not re-

strict the feature dimension. Therefore, we can use a reason-

ably high-dimensional feature set. The features need to be

picked carefully so that in the classifier stage, there is enough

distinction between different classes. The intensity value of
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each voxel is an obvious choice and the most popular fea-

ture in histogram-based TF [1]. To emphasize the boundaries

between materials [1], we use the 3D gradient magnitude of

each voxel as another feature. Finally, we want to capture the

local variance in intensity to capture the distinctive properties

of each class. As a result, the average neighboring voxel val-

ues (in all three directions) are used as other three features.

Hence, the 5D feature space consist of:

• the intensity value,

• the 3D gradient magnitude of each voxel, defined by:

G =

√

G2
x +G2

y +G2
z , (2)

where Gx,Gy and Gz are the gradient values along X, Y

and Z direction, respectively.

• The average intensity value of the neighboring 8 voxels

in X, Y and Z direction, respectively. The three average

values along different directions are treated as different

features.

These features provide us with reasonable localization of

voxel attributes, which helps separating different structures in

the volume in the classification stage.

3.4. SN-SVM Classifier

The SN-SVM classifier [7] is motivated by combining the

merits of both discriminant-based classifier such as KND

[9] and the classical SVM. The KND calculates the within-

class scatter matrix by considering the κ-nearest neighbors

for each training data point. Thus it considers the “near-

global” characteristics of the training distribution. On the

other hand, SVM only considers the “local” characteristics

(support vectors) to build the separating hyperplane. Both

of these sources of information are important for accuracy

[7]. In SN-SVM, these two are combined by incorporating

the within-class scatter matrix ∆ and the between-class scat-

ter matrix ∇ of KND into the SVM optimization problem.

Let X = {xi}
N
i=1

represents the training data and T = {ti}
N
i=1

represents the associated class tags for a two-class problem.

We also use the kernel trick [8] to map the data points to a

higher-dimensional feature space with the function Φ. Then,

the SN-SVM formulation can be described by the following

optimization problem:

min
w,0,w0

{

1

2
wT (η∆(∇ + βI)−1∆ + I)w

+C

N
∑

i=1

max(0, 1 − ti(Φ
T (xi)w + w0))

}

. (3)

Here, w and w0 are the weight vector and the offset to

be optimized. η is the control parameter which dictates the

amount of contribution from SVM and KND. By using an ap-

propriate value of η, we can control the direction of the sepa-

rating hyperplane of the classifier and place it in an optimum

way. In [7], we have also shown that the solution provided

by SN-SVM is more sparse than the classical SVM, which

can be utilized by efficient numerical methods to significantly

speed up computation[17].

The value of η is set to 0.3 through experiments in the

proposed system. Since the problem can be multi-class, we

have used the one-vs-one classification scheme with our SN-

SVM method [7].

3.5. Color and Opacity Assignment

Once the classification is complete, different colors and opac-

ity values are automatically assigned to different classes by

the system. We use the HSV color space. The H (hue) value

in this space determines the actual intensity of the color, while

the S and V values respectively determine the saturation and

brightness.

To determine the H value, we use a harmonic set [10]

which formally specifies the relative position of the colors

on a color wheel rather than specific colors themselves. sev-

eral different templates (T-type, X-type etc.) can be defined.

These templates can also be rotated to easily generate a new

set of colors in the system. For a dataset, we equally space

out the classes on to the selected color template, so that each

class is assigned a distinct H value.

We generate the S and V values based on the understand-

ing of the user’s perception [10]. Voxel classes that have a

small spatial variance occupy a smaller viewing area com-

pared to others and need to be assigned more saturated colors

for highlighting [10]. So we calculate the S value for each

class based on spatial variance among the class voxels:

S i =
1

(1 + σi)
, i = 1, . . . , Z. (4)

Here, σi represents the spatial variance of each class.

Since the rendering results are usually viewed at a dis-

tance from the whole volume, we can assume that voxel

classes closer to the center of the volume needs to be brighter

so that they are not overshadowed by other classes [10].

Hence, The V value can be calculated as follows:

Vi =
1

(1 + Di)
, i = 1, . . . , Z. (5)

Here, Di denotes the distance of the centroid of the i−th

class to the center of the volume [10].

The last parameter to define the full TF is opacity. Since

voxel classes with smaller spatial variances are likely to be

obstructed for proper viewing by other classes, we calculate

the opacity values based on spatial variances while emphasiz-

ing the boundary:
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(a) Foot (b) Visual Male Head (c) Engine

Fig. 3. Rendering of the datasets without any classification.

(a) Class 1 & Class 2 (b) All Classes together

Fig. 4. Results for the Foot dataset.

Ov
i = (1 −

1

σi

) ∗ (1 + ̥v), i = 1, . . . , Z. (6)

Here, σi is the spatial variance of the i−th class. ̥v is the

Gradient Factor which helps boundary emphasis:

̥v =
Gv

maxv∈ZGv

. (7)

Here, Z denotes the class that the voxel v belongs to. Gv is
the 3D gradient magnitude for each voxel (Equation (2)).

These values are converted into RGBA texture and passed

on to the rendering stage. The Visualization Toolkit (VTK)

[18] is used for fast GPU computed rendering.

4. EXPERIMENTAL RESULTS

We provide results on three CT scan datasets [19]: Foot, Vi-

sual Male Head and Engine (1). To speed up the classification

process, we threshold these datasets with a value close to zero

so that the air surrounding the actual data are not passed on to

the classifier.

Figure 3 shows an intermediate rendering of the datasets

with arbitrary colors after thresholding. We can see that no in-

ner structures are visible before classification. These images

are presented to provide certain context to the results after

classification.

Figure 4 shows the result obtained based on the train-

ing data shown in Figure 2. Here, we see that our SN-SVM

method can separate the bones, joints and the outer layer of

the foot effectively. Figure 4-(b) shows that due to the use of

intelligent color and opacity assignment, all three classes can

be visualized at the same time and easily distinguishable.

Figure 5 shows comparison between SN-SVM and the

classical SVM (based on the same training data). The bones

(a) SN-SVM (b) SVM

Fig. 5. Comparison between SN-SVM and SVM.

(a) Visual Male Head (b) Engine

Fig. 6. Results for Visual Male Head and Engine dataset.

and joints are shown together. We can clearly see the advan-

tage of SN-SVM. In the areas pointed by arrows, the SVM

was unable to accurately separate the joints from the bones,

while the SN-SVM method was successful. This shows the

superiority of the combined approach in SN-SVM. Although

the SN-SVM result may look noisy in some areas, the target

here is to show the effectiveness in separating the bones and

joints. The apparently cleaner output from SVM can actually

mislead the user in thinking this is accurate.

Figure 6 shows the other two datasets. In both cases, two

classes of voxels were defined. We can see that the inner

structures are easily separable with the proposed method.

Dataset Size # Training Samples Total Time

Foot 256X256X256 401 12.33

Vis. Male 128X256X256 233 2.27

Engine 256X256X256 180 1.07

Table 1. Dataset details and required times (in seconds).

Table 1 lists the training sizes and times required for the

SN-SVM method (both training and classification). We see

that, even with an small number of training samples, the re-

sults obtained are accurate and quick.

5. CONCLUSION

In this paper we have proposed a new image-centric volume

visualization approach where the user directly interacts with

the data to select interesting structures. Treating the user in-

put as training data, the SN-SVM classifier combined with the

concept of color harmonization can generate accurate output

showing easily distinguishable structures with aesthetically

pleasing colors. Experimental results on several datasets have

shown the effectiveness and efficiency of the system.
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