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ABSTRACT

Music segmentation is the task of automatically identifying
the different segments of a piece. In this work we present
a novel approach to cluster the musical segments based on
their acoustic similarity by using 2D-Fourier Magnitude Co-
efficients (2D-FMCs). These coefficients, computed from a
chroma representation, significantly simplify the problem of
clustering the different segments since they are key transpo-
sition and phase shift invariant. We explore various strategies
to obtain the 2D-FMC patches that represent entire segments
and apply k-means to label them. Finally, we discuss possi-
ble ways of estimating k and compare our competitive results
with the current state of the art.

Index Terms— Music Segmentation, 2D-Fourier Trans-
form, Clustering

1. INTRODUCTION

The task of music segmentation aims to automatically esti-
mate the structure of a given audio signal by performing two
subtasks: (i) identify the boundaries that will define a set
of segments (or sections), and (ii) label them based on their
acoustic similarity (e.g. verse, chorus). Music segmentation
is relevant in many scenarios, e.g. to facilitate the naviga-
tion of large music collections, to create representative music
summaries, to improve retrieval algorithms by analyzing mu-
sic databases at a segment level.

One of the most standard music segmentation approaches
is to compute the self-distance matrix of a set of audio fea-
tures extracted from a given audio signal and find the repeated
segments across its diagonals [1, 2]. Other solutions include
hidden Markov models [3], matrix factorization [4, 5], and
other diverse techniques (e.g. [6, 7, 8]). The two subtasks of
music segmentation are often addressed separately, e.g. seg-
ment boundaries [9] and labeling of the segments [10], even
though efforts combining the two have also been presented
[11].

In this work we present a novel approach to label segments
in Western popular music by using 2D-Fourier Magnitude
Coefficients (2D-FMCs). Recently, these coefficients have
proven to be an efficient solution to the task of large-scale
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cover song identification [12, 13] because of their interesting
inherent characteristics: key transposition and phase shift
invariance. By aggregating 2D-FMCs into fixed-size patches
representing full tracks, the comparison between tracks be-
comes fast and trivial. Analogously, and as a novel process,
we explore various methods to obtain a set of segment-
synchronous 2D-FMCs that can be used to characterize the
similarity between segments of a given track, and to group
those segments using k-means clustering. This results in a
simple and computationally inexpensive process (as opposed
to [14] or [4]). We also discuss methods to estimate the op-
timal k, and systematically evaluate the main components of
our approach, resulting in state of the art performance.

2. 2D-FMCS IN MUSIC SEGMENT SIMILARITY

In Western popular music, segments representing the same
music section are likely to have common harmonic or melodic
sequences (e.g. phrases, melodic lines, riffs, chord progres-
sions), which are often played at different tempi, instrumenta-
tion and dynamics, and are flanked with repetitions and orna-
ments (that could cause phase shifts in the pattern), or even at
different keys. In this section we detail how beat-synchronous
2D-FMCs are invariant to these changes and therefore can be
effective to label the different segments of a given piece.

2.1. Beat-Synchronous Chroma Representation

Similarly to other works (e.g. [9, 4, 5]), we solely base the
proposed algorithm on chroma representations, which have
proven to be a relevant musical aspect when segmenting mu-
sical pieces, especially for Western popular music [15].

The chosen features are Pitch Class Profiles (PCP or chro-
magrams), which can be obtained from the audio signal by
computing a constant-Q spectrogram and folding each pitch
into a single octave. This results in a 12-pitch class vector rep-
resenting the energy for each one of the classes of the chro-
matic scale for every time frame. In our case, starting from a
mono audio signal sampled at 22050 Hz, we form a constant-
Q transform using the method [16] with a frame rate of 20 Hz
and compute the PCP using 8 octaves (starting at 27.5Hz, or
A0) with 12 bins per octave.

Once the PCP vectors are computed, we estimate the beats
of the track and average the pitch vectors within beat bound-
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aries, such that the resulting representation becomes beat-
synchronous, similarly to [17]. This results not only in a local
tempo invariant representation, but also in a significant reduc-
tion of the size of the PCP matrix. In our implementation, the
beats are extracted using The Echo Nest API1, since the au-
thors are familiar with this API2. Then, we segment the beat-
synchronous PCP vectors using the boundaries that define the
sections of a given track. These boundaries can be automati-
cally estimated using existing methods (we use the approach
described in [9]).

2.2. Computing the 2D-FMC Segments

By computing the magnitude 2D-Fourier transform of a se-
quence of beat-synchronous PCP, we achieve three main char-
acteristics: (i) key transposition invariance, (ii) phase shift in-
variance, and (iii) local tempo invariance.

The 2D-Fourier transform, applied to the 2D signal xi ∈
IRM×N , is defined as follows:

Xi(u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

xi(m,n)e
−2πi(mu

M +nv
N ) (1)

where xi is the i-th PCP segment of a given track, M is the
dimensionality of the PCP vector (i.e. 12), and N is deter-
mined based on one of the strategies described below.

The goal of this stage of the process is to produce segment-
synchronous feature vectors of the same dimensionality M ×
N . However, different segments of a given track will have
different lengths, requiring some form of segment length nor-
malization in our analysis. We explore three different strate-
gies:
• Maximum Window Size: In this setup, N is set to the

maximum length of the set of PCP segments that con-
stitute a track. Since most of the segments will be less
than N , we will zero-pad the segments before obtain-
ing the 2D-FMC. The zero-pad operation is performed
across the time dimension, resulting in an interpolated
version of the patch of lengthN , which makes the com-
parison with other patches possible.

• Minimum Window Size: Another approach is to set
N to the smallest segment size of all the PCP segments
of a given track. The majority of the PCP segments
will be greater than N , so we need to group the longer
segments into this smaller N . To do so, we divide the
segments into 2D-FMC patches of size N with a hop
size of one beat and aggregate them into a single patch
of length N . We consider three different types of ag-
gregation: mean, median, and maximum.

• Fixed Window Size: In this case, we choose a spe-
cific size for N and then compute as follows: If the
PCP segment size is less than N , then zero-pad as in
the maximum segment type. On the other hand, if the
PCP segment size is greater than N , then we divide

1http://developer.echonest.com
2A study on beat trackers and their impact on music segmentation could
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the longer segment into smaller patches and aggregate
them using the mean, median or maximum as in the
minimum segment type.

2.3. Clustering the 2D-FMC Segments

Before clustering, we take the logarithm of the patch such that
the weight of the DC component is alleviated and the higher
frequencies are emphasized, as it empirically showed to yield
better results in our experiments. We also exploit the symme-
try of the 2D-FMC by removing half of the coefficients.

We use k-means clustering with Euclidean distance on the
segment-synchronous 2D-FMC patches. Further, to validate
the quality of each partition, we use the Bayesian Information
Criterion (BICk), which is defined as follows:

BICk(S) = L− (p/2) log(N) (2)

where S ∈ IRB×M×N is the set of B 2D-FMC segment-
synchronous patches, p is the number of free parameters of
the system (which in our case is the sum of k classes, N ×
k centroid coordinates and the variance estimate σ2 of the
partition), and L is the log-likelihood of the data when using
k. Formally:

L = −(N/2) log(2π)− (NM/2) log(σ2)− (N − k)/2 (3)

More information on this model can be found in [18]. We
run k-means with various k and use the knee point detection
method [19] in BICk in order to estimate the most optimal k.

2.4. Illustrating the Process

In Figure 1 an example of our method is depicted with the
song “And I Love Her” by The Beatles. The beat-synchronous
PCP matrix (top-left), the segment-synchronous 2D-FMC
patches (bottom-left), and the normalized Euclidean distance
between each pair of 2D-FMC patches (right) are shown.
The segments S (solo) and V4 (verse 4) are key-modulated
versions of segments V1, V2, and V3. This modulation is
marked with an arrow in the beat-synchronous PCP matrix,
but disappears in the 2D-FMC representation, which success-
fully makes these five segments close to each other as shown
by the self-distance matrix. The bridge (B) is harmonically
different to the rest of the segments, which is also captured
in the self-distance matrix, while the intro (I) and outro (O)
share harmonic parts and, even though they have different
time lengths, are grouped closer to each other.

Our method estimates k = 3 unique labels for this track
(I+O, V+S, and B). However, the ground truth indicates 5
unique labels (I, V, B, S, and O). Harmonically, it makes sense
to have only 3 unique labels, but the timbre (e.g. for the gui-
tar solo) and the placement of the segments (e.g. intro and
outro) also have a relevant role in music segmentation. This,
plus the inherent subjectiveness of this task, makes this prob-
lem remarkably difficult. In fact, it has been shown that it
is unlikely that two people would manually annotate a spe-
cific dataset identically [9, 20, 21]. Efforts towards improv-
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Fig. 1. Example of the similarity between 2D-FMC patches representing sections of the song “And I love Her” by The Beatles. The
beat-synchronous PCP features are on the top-left, segmented with the ground truth segments by vertical white lines. The key transposition
between V3 and S is marked. On the bottom-left the 2D-FMC patches are shown for each of the segments. On the right, the similarity
between 2D-FMC patches is shown using the normalized Euclidean distance.

ing these annotation issues in music segmentation are being
carried out by the authors at the moment.

3. EXPERIMENTS

In this section we aim to find, via experimentation, the opti-
mal parameters of our system: the segment-synchronization
strategy, and the number of unique labels k. To do so, we
make use of The Beatles dataset annotated by the Tampere
University of Technology3, which is a hand annotated dataset
of 180 tracks including boundaries and segment labels, thus
facilitating the evaluation of automatic tasks like music seg-
mentation. Even though we considered other datasets such as
SALAMI [20], it was easier for us to collect the audio data
for The Beatles (12 CDs).

3.1. Evaluation

To evaluate the results, we used the pairwise clustering analy-
sis introduced in [3] —which yields three values: F -measure
(PF ), Precision (PP ) and Recall (PR)— and the entropy met-
rics defined in [22] —which result in three scores: F -measure
(SF ), over-segmentation (So) and under-segmentation (Su).
The former evaluation is more sensitive to boundary posi-
tions, while the latter strongly penalizes randomly labeled
clusters (more details on the differences between these two
metrics are found in [22]). In any case, we keep the for-
mer metric (i.e. pairwise clustering) for comparison purposes.
Each presented result is the average of 10 different runs, since
k-means is sensitive to initialization.

3.2. Optimal Segment-Synchronization Strategy

We make use of the annotated boundaries and the real k
(i.e. the number of unique labels from the ground truth for
each track) to experimentally determine the best segment-
synchronization strategy. We run our algorithm with the three

3http://www.cs.tut.fi/sgn/arg/paulus/beatles sections TUT.zip

different strategies discussed in section 2.2: maximum, min-
imum and fixed. For the minimum and fixed types, we also
explored three different types of aggregation: median, mean,
and max. Finally, for the fixed strategy, we used a window
size of N = 32 (i.e. 8 bars at 4

4 time signature, which is most
common in popular music), since it empirically yielded better
results when compared to other multiples of 4.

The results are shown in Table 1. As we can see, the best
performance is given by the maximum window size type, with
a PF of 81.96% and SF of 87.18%, which defines the upper
bound of our system’s performance. This strategy clearly out-
performs all other strategies tested. We hypothesize that, by
bypassing aggregation and including all information within
each segment, this strategy captures important low-frequency
periodicities that are characteristic of the segments, e.g. sub-
sequence repetitions. To put these results in context, we also
show the results reported by Kaiser & Sikora [10] that also
tested their method with the ground truth boundaries. Our
method finds a better balance between precision and recall, as
opposed to Kaiser’s, which tends to over-detect the number of
unique labels. In the rest of the paper, we use the maximum
length synchronization strategy, in accordance with these re-
sults.

N type Aggr. PF PP PR SF So Su

Max – 81.96 84.35 81.3 87.18 86.27 89.14

Min
median 67.67 68.43 70.06 75.8 74.61 77.73
mean 67.74 70.47 67.93 76.01 74.09 78.03
max 67.42 69.49 74.23 75.96 74.23 77.33

Fixed
median 68.12 70.61 68.73 76.12 74.71 78.38
mean 68.23 70.78 68.61 76.27 74.40 78.52
max 69.80 72.48 69.80 77.32 75.34 79.54

Kaiser [10] 80.0 87.0 76.6 – – –

Table 1. Results of our system when using the boundaries and the
real k from the ground truth.

3.3. Estimating k

In this subsection we aim to estimate k (number of unique
segments per track) in the most optimal way, while still us-
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Fig. 2. Histogram of the unique number of segments and the esti-
mated ones in The Beatles dataset.

k PF PP PR SF So Su

3 68.20 55.94 95.03 71.46 94.54 59.66
4 76.12 70.18 88.60 81.20 89.60 76.29
5 76.83 80.47 77.93 83.28 82.68 85.82
6 72.26 85.14 66.11 81.68 76.14 90.30

auto 71.50 83.93 68.76 80.35 83.39 85.65

Table 2. Results of our system when using different k (fixed and
auto) while using ground truth boundaries.

ing the ground truth boundary annotations. By examining the
Beatles dataset, we observe that the median k is 5, with a
histogram peak at k = 4 (see Figure 2). We run our algo-
rithm with four different k = {3, 4, 5, 6}. Unsurprisingly,
the results in Table 2, show that best performance is reached
when k = 5, closely followed by k = 4. Note that as k in-
creases, the metrics related to under-segmentation PP and Su
increase, and the metrics related to over-segmentation PR and
So decrease, as expected.

In order to estimate k, we use the knee point detection
method on the BIC, described in subsection 2.3. The his-
togram of estimated k can be seen in Figure 2 in green, with
results shown in Table 2. The approximated k tends to find
more labels than the ones existing in the dataset (the median
of the estimated k is 7 instead of 5). A way of alleviating this
might be by using x-means [18], which uses a tree structure
for increasingly large partitions, and only increases it if the
difference between the BIC value of the new partition (with
k + 1 clusters) and the current one is greater than a certain
threshold. We leave this as future work. The results show how
fixing k = 5 yields better F -measures, illustrating the diffi-
culty of estimating k. Note that this estimation is made with a
small number of 2D-FMC segment-synchronous patches (it is
uncommon for a track to have more than 15 segments), which
likely has a negative effect on clustering. One idea is to ob-
tain 2D-FMC patches for every beat (with a fixed number of
beats for each patch and a hop size of one) in order to have a
greater number of patches. Even though fixing k can also be
interpreted as overfitting the dataset, it is not an uncommon
practice [10, 5], and therefore in the last experiments we use
both fixed and automatic k.

k PF PP PR SF So Su

4 53.93 47.57 67.18 58.76 69.00 53.37
5 54.41 53.83 58.75 63.01 65.82 62.48
6 57.34 64.07 54.49 68.09 65.26 72.95
7 58.31 71.74 51.15 71.15 65.01 80.19

auto 57.31 66.68 52.75 68.95 65.99 76.39
Grohganz [23] 68.0 71.4 68.8 – – –

Kaiser [10] 60.8 61.5 64.6 – – –
Mauch [14] 66 61 77 69.48 76 64

Nieto [5] 59.3 48.9 83.2 47.78 49.8 47.8
Serrà [24] * 71.8 65.1 80 – – –
Weiss [4] 60 57 69 58.84 62 56

Table 3. Results of our system when using different k (fixed and
auto) and estimated boundaries. *: reported in [23]

3.4. Estimated Boundaries

To the best of our knowledge, the highest results published
on boundary detection using chroma representations on The
Beatles are found in [9]. We implemented their method to
estimate the boundaries that our algorithm will employ.

In table 3, our method is compared with a number of
state of the art techniques in the literature. In this case we
need to use a higher k in order to obtain better F -measures,
which might be due to false-positives in estimated bound-
aries. These false boundaries likely result in shorter segments
that need to be labeled differently in order to maximize the
scores. Imprecise boundary estimations also make the 2D-
Fourier transform not to capture the lower frequencies caused
by the longer periodicities of the segment, which worsen the
results as we saw in subsection 3.2. Lukashevich showed that
poorly estimated boundaries greatly penalize PF compared
to SF [22], which may explain why the differences between
the two increase for our method compared with the previous
experiments. This illustrates a drawback of our method: its
high sensitivity to good boundary estimation, as clearly illus-
trated by a lower PF than those of the other approaches in
the table. On the other hand, when contemplating the entropy
scores, we see that our algorithm obtains the best result for
k = 7 with an SF of 71.15%. Since the SF measure is partic-
ularly sensitive to random clustering, this demonstrates state
of the art performance for segment labeling when compared
to previous approaches.

4. CONCLUSIONS

We have presented a novel algorithm to capture the similarity
between music segments using 2D-FMCs. This representa-
tion is invariant to key transpositions and phase shifts, mak-
ing similarity computations on chroma features both robust
and efficient. In addition we have introduced novel solutions
for computing segment-synchronous features, and for auto-
matically learning the number of unique segment labels. Fur-
thermore, we have tested the optimal combinations of strate-
gies and parameters by running a series of experiments that
show how the algorithm is competitive when compared with
the state of the art.

667



5. REFERENCES

[1] Meinard Müller, “Audio Structure Analysis,” in Informa-
tion Retrieval for Music and Motion, chapter 7, pp. 141–168.
Springer-Verlag, Berlin, 2007.

[2] Jouni Paulus, Meinard Müller, and Anssi Klapuri, “Audio-
Based Music Structure Analysis,” in Proc of the 11th Interna-
tional Society of Music Information Retrieval, Utrecht, Nether-
lands, 2010, pp. 625–636.

[3] Mark Levy and Mark Sandler, “Structural Segmentation of
Musical Audio by Constrained Clustering,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 16, no. 2, pp.
318–326, Feb. 2008.

[4] Ron Weiss and Juan Pablo Bello, “Unsupervised Discovery of
Temporal Structure in Music,” IEEE Journal of Selected Topics
in Signal Processing, vol. 5, no. 6, pp. 1240–1251, 2011.

[5] Oriol Nieto and Tristan Jehan, “Convex Non-Negative Matrix
Factorization For Automatic Music Structure Identification,” in
Proc. of the 38th IEEE International Conference on Acoustics
Speech and Signal Processing, Vancouver, Canada, 2013, pp.
236–240.

[6] Ewald Peiszer, Automatic Audio Segmentation: Segment
Boundary and Structure Detection in Popular Music, Master’s
thesis, Vienna University of Technology, 2007.

[7] Ilias Theodorakopoulos, George Economou, and Spiros Fo-
topoulos, “Unsupervised Music Segmentation Via Multi-scale
Processing of Compressive Features’ Representation,” in Proc.
of the 18th IEEE International Conference on Digital Signal
Processing, Fira, Greece, July 2013, pp. 1–6.

[8] Jouni Paulus and Anssi Klapuri, “Music Structure Analysis
Using a Probabilistic Fitness Measure and a Greedy Search Al-
gorithm,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 17, no. 6, pp. 1159–1170, Aug. 2009.
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