
PARALLEL PARTICLE-PHD FILTER

Marco Del Coco

Innovation Engineering Department
University of Salento, Italy

Andrea Cavallaro

Centre for Intelligent Sensing
Queen Mary University of London, UK

ABSTRACT

The complexity of multi-target tracking grows faster than linearly
with the increase of the numbers of objects, thus making the design
of real-time trackers a challenging task for scenarios with a large
number of targets. The Probability Hypothesis Density (PHD) filter
is known to help reducing this complexity. However, this reduction
may not suffice in critical situations when the number of targets, di-
mension of the state vector, clutter conditions and sample rate are
high. To address this problem, we propose a parallelization scheme
for the particle PHD filter. The proposed scheme exploits the knowl-
edge of mutual interacting targets in the scene to help fragmentation
and to reduce the workload of individual processors. We compare
the proposed approach with alternative parallelization schemes and
discuss its advantages and limitations using the results obtained on
two multi-target tracking datasets.

Index Terms— Multi-target tracking, PHD filter, parallelism.

1. INTRODUCTION

Multi-target tracking (MTT) is a widely investigated problem that re-
quires dealing with concurrent and potentially interacting targets [1–
3]. Although Monte Carlo methods [4] (particle filters) are widely
used for target tracking, the number of particles grows exponentially
with the number of targets, potentially leading to computationally
intractable multi-target states. The Random Finite Set (RFS) [5] the-
ory offers an effective framework for MTT and, coupled with the
Bayes recursion, can account for several tracking challenges, such
as the growing state dimension for multi-target problems, false or
missing measurements, target births and deaths. This framework is
represented by the Probability Hypothesis Density filter (PHD) that
propagates the first-order moment of the multi-target posterior in-
stead of the full posterior itself [6]. The PHD filter can be imple-
mented as a particle filter (P-PHD) [3, 7] and time-efficiency can be
addressed with a pipeline approach [8]. However, this approach is
limited by the number of pipeline levels and does not take advantage
of current multi-processors systems. An appealing solution is that of
parallel computing that, to the best of our knowledge, has not been
yet investigated for the P-PHD.

Naive parallelizations distribute particles among processors [9],
fragmenting the data over processors and being limited by data
dependency constraints. The over-linearity relation between the
amount of data to be analyzed and the computational load makes the
perspective of an additional fragmentation more attractive.

This work was carried out while the first author was visiting the Centre
for Intelligent Sensing, Queen Mary University of London. A. Cavallaro
acknowledges the support of the Artemis JU and UK Technology Strategy
Board as part of the Cognitive & Perceptive Cameras (COPCAMS) project
under GA number 332913.

In this paper we propose a parallel algorithm for P-PHD that
takes advantage of the knowledge of the particle location in the
multi-target state. The observation of multi-target states is key to
assume possible independences between groups of particles that are
associated to targets that are distant from each other in the state
space. These particles can be treated separately and spread among
different processors. This solution results is a super-fragmentation
that reduces the computational complexity. We compare the pro-
posed solution with alternative parallelization approaches in order
to quantify the improvements in performance and discuss its advan-
tages and limitations.

This paper is organized as follows. Sec. 2 describes the P-PHD.
Sec. 3 introduces the proposed parallelization approach based on the
observation of scene behavior and possible sub-optimal adjustments.
In Sec. 4 we analyze the performance of the proposed approach and
compare it with alternative solutions. In Sec. 5 we draw the conclu-
sions.

2. PARTICLE PHD FILTER

Let xk=(xk, ẋk, yk, ẏk) ∈ Es be a target state at current time
k where (xk, yk) is the position and (ẋk, ẏk) the velocity of
the target, and Es the state space. Let zk=(xzk , yzk) ∈ EO

be the single-target observation and EO the observation space.
Xk={xk,1, . . . ,xk,M(k)} and Zk={zk,1, . . . ,zk,N(k)} are the
multi-target state and the set of observations at k, respectively, and
M(k) and N(k) are the number of targets and observations.

P-PHD employs a Monte Carlo method to approximate the PHD

with a set of weighted samples [3, 7]. Let {ω(i)
k ,x(i)

k }Lk
i=1 be the set

of Lk weight-state (particles) pairs that approximate the multi-target

state distribution at k, with ω(i)
k being the weight of particle x

(i)
k .

The particles at k − 1 are propagated according to a prior model to
obtain a prediction at k. Lk−1 particles at k − 1 are propagated us-

ing the importance function qk(·|x
(i)
k−1,Zk). When measurements

at k are available, Jk new particles are drawn from the importance
function defined as pk(·|Zk) [7]. An approximation of the predicted
distribution of the multi-target state at k can now be expressed as

{ω̃(i)
k , x̃(i)

k }
Lk−1+Jk

i=1 . The values of the predicted weights ω̃(i)
k|k−1

can be computed as [7]:

ω̃(i)
k|k−1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

φk(x̃
(i)
k ,x(i)

k−1)ω
(i)
k−1

qk(x̃
(i)
k |x(i)

k−1,Zk)
, i = 1, . . . , Lk−1

γk(x̃
(i)
k)

Jkpk(x̃
(i)
k |Zk)

, i = Lk−1 + 1, . . . , Lk−1 + Jk.
,

(1)
where φk|k−1(x, ξ) = ek|k−1(ξ)fk|k−1(x|ξ) is the analogue of the
single-target state transition probability, ek|k−1(ξ) is the probability
that the target still exists at k and γk(·) is the intensity function of

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6628

new-born targets [7]. When measurements are available, weights are
updated based on the observations.

Before the update and resampling steps, it is necessary to
split the particle set over different time-strata so that particles
can be grouped based on the time instant in which they were cre-

ated. Next, the set {ω̃(i)
k , x̃(i)

k }
Lk−1+Jk

i=1 is decomposed into S

sets {ω̃(i)
k,s, x̃

(i)
k,s}

Lk,s

i=1 where s=1, . . . , S is the time-stratum index.
Therefore the update and resampling steps can be independently
performed over different time-strata using the measurement set Zk.

The weights are updated using [7]:

ω̃(i)
k =

⎡

⎣pM(x̃(i)
k) +

∑

z∈Zk

ψk,z(x̃
(i)
k)

κk(z) + Ck(z)

⎤

⎦ ω̃(i)
k|k−1, (2)

where pM (x) is the miss-detection probability, κk(z) is the clutter
intensity, ψk,z(x)=(1 − pM (x))gk(z|x), gk(z|x) is the likelihood
that z is generated by a target with state x, and

Ck(z) =

Lk−1+Jk
∑

j=1

ψk,z(x̃
(j)
k)ω̃(j)

k|k−1. (3)

The layer index s is omitted for simplicity of notation.
After the update step a Multistage Multinomial Resampling

(MMR) is performed separately over different S strata [7]. MMR
is necessary because a resampling over the whole particle set might
delete new-born particles with low weights, which might be much
smaller than the weights of older particles. For this reason, it is
preferable to split particles into multiple time-strata and to perform
a separate resampling over each stratum. Particles are then clustered
to locate peaks of the multimodal distribution describing the multi-
target state. Clustering generally operates only over a predefined
number of the oldest time-strata to avoid the presence of particles
survived to the last ones.

The state transition fk|k−1(xk|xk−1) has generally a first or-
der Gaussian dynamic [7], where the acceleration of each target is
modeled as a random process with a fixed standard deviation:

xk =

[

A 02
02 A

]

xk−1 + [np nv np nv]
T , (4)

where A=

[

1 dt
0 1

]

, np and nv are the independent white Gaussian

noises over position and velocity with variance of σp and σv , respec-
tively; dt is the sample time step, 02 is a 2 by 2 matrix of zeros and T
is the transpose operator. The single-target likelihood can be defined

as gk(z|x)=N (z;Hx,Σ(x)), where H=

[

[1 0 0 0
0 0 1 0]

]

, Σ(x)

is a diagonal matrix and diag(Σ(x)) = ([σp,σv,σp,σv]). If knowl-
edge of the scene is not available, we can assume pM (x), ek|k−1(ξ),
γk(x), κk(x) to be constant over the scene [7].

New particles are generated from the density pk(xk|Zk) that
is obtained as follows. For the target position, particles are spread
around the measurements by

ppk([xk, yk]|Zk) =
1

N(k)

∑

z∈Zk

N (x; [xzk , yzk],Σb(z)), (5)

which is a mixture of Gaussians centered in Z. Σb(z) is a 4×4
diagonal matrix defined as diag(Σb(z)) = [σbp ,σbv ,σbp ,σbv].
The target velocity component is instead modeled as pvxk

(x̂k) =
U(vminx , vmaxx) for x and pvyk (ŷk) = U(vminy , vmaxy) for y.

Fig. 1. Data (measurements and particles) and operations in a
Particle-PHD (P-PHD) pipeline. The overlapping blocks represent
the update and resampling steps performed over different time-strata.

The P-PHD pipeline is summarized in Fig. 1. An increase in
targets, state dimension, clutter noise component leads to a growth in
the number of particles that are necessary for a reliable tracking and
consequently to an increase in the computational load. We aim to
reduce this load by effectively spreading particles across processors,
as described in the next section.

3. P-PHD PARALLELIZATION: THE P-BD FRAMEWORK

Let P be the number of available processors and {ω(i)
k,p,x

(i)
k,p} be the

i-th particle, composed of its state and its weight allocated to proces-
sor p ∈ {1, 2, . . . , P}. The complexity of the prediction step grows
linearly with the number of particles that are independent of each
other and therefore can be divided into different processors that can
then compute the prediction independently. The computational com-
plexity of multimodal resampling grows as O(n2) (n is the number
of particles) and has a strict data dependence that make paralleliza-
tion more challenging. In fact the data dependence shown in Eq. (2)
implies additional communication among processors. Therefore we
focus on the parallelization of the resampling step.

We propose a behavior-based parallelization combined with
a distributed resampling (P-BD) with proportional allocation [9]
(Fig.2). We aim to achieve a decomposition of the particles in sub-
groups to be analyzed separately in order to exploit the inequality
∑

j∈J n2
j < n2, where n =

∑

j∈J nj , J is the group of index
j in which the total number of particles has been split and nj is
the number of particles in the j-th group. To this end, we cluster
particles based on the target they belong to and obtain groups of
particles that, if the targets are separated enough in the state space,
can be considered independent, and therefore updated and resam-
pled disjointly. We generate two types of fragmentations, namely an
inter-processor fragmentation and an intra-processor fragmentation
(fragmentation in different groups inside a processor).

The first step is the initialization, where the particles of each
measurement are equally distributed among the processors to avoid
unbalancing due to the elimination of particles associated with clut-
ter measurements. The subsequent steps are done iteratively.

The prediction is performed with Eq. 1 over all particles in-
dependently. The particle time fragmentation block splits the par-
ticle set in S time-strata so they can be described by the tupla

{ω̃(i)
k x̃

(i)
k , s, p, l′} where l′ is the label that defines the macro-group

of particles referring to different targets and treated jointly due to
their mutual close proximity, and s and p are the strata and processor

index. Each group is now defined as {ω̃(i)
k x̃

(i)
k , s, p, l′}

Lp,s,l′

i=1 where
Lp,s,l′ is the group cardinality.

The update and resampling steps operate as follows. Let

Λs,p,l′={ω̃
(i)
k x̃

(i)
k , s, p, l′}

Lp,s,l′

i=1 be the group of particles associ-

6629

Fig. 2. P-PHD pipeline for P-BD: data blocks represent available
measurement or particles. Data are sent to the operative blocks that
performs the P-PHD. Prediction is executed in parallel. Overlapped
blocks represent the update and resampling steps performed sepa-
rately over different time-strata. For each strata the update and re-
sampling are internally divided by particle group and processor using
a distributed resampling with proportional allocation [9].

ated to p processors to which they belong, time layer s, and label
l′ while Γs,l′ = {Λs,p,l′′ |l

′ = l′′} represents the group of particles
with the same label l′ assigned to different processors. Ck(z) is
computed with Eq. 3 over the particles of each group Γs,l′ and the
complete measurement set. This is possible thanks to the negligible
influence of (i) distant measurements over the updated particles and
of (ii) distant particles with respect to the measurements interacting
with the updated particles. MMR is also conducted separately over
each Γs,l′ by means of the distributed resampling with proportional
allocation [9] among the Λs,p,l′ sub-groups of Γs,l′ . Unfortunately
resampling may cause particle unbalancing. We therefore apply
particle routing to rebalance the number of particles over each
processor.

The clustering is done over all the particles that are then labelled
with a group label l that substitutes the l′ label. The total group of

particles is now {ω(i)
k x

(i)
k , s, p, l}

Lp,s,l

i=1 . Each cluster represents a
peak of the Gaussian Mixture Model introduced and a cluster list
C={c1, . . . , cL} of estimated states cj={x, y, ẋ, ẏ} where the index
of each element corresponds to the cluster label l. We consider all the
particles (of all available time-strata) because each particle needs a
label to be associated to a target and to be correctly allocated to pro-
cessors. Although we are using (for clustering) all the layers except
the one at step k, multiple layers are useful to increase the number of
particles for the real targets and reduce those for clusters associated
to clutter (i.e. particles not propagated in other strata). In this man-
ner clusters due to clutter can have a low weight and be removed by
thresholding [7].

We need now to take into account possible interacting particles
of targets in close proximity that should be analyzed contextually
due to their dependence in the update and resampling step. The tar-
get clustering block aims to detect clusters in close proximity and to
apply a second-level label l′ to each particle so that in step k + 1
particles with the same l′ can be treated jointly.

Given the cluster list C={c1, . . . , cL} at time step k target clus-

tering creates a new list C̃={C1, . . . , CL′} of subsets of C where L′

is the number of subsets. We compute all possible distances between
pairs and then group the elements of C in subsets. Note that a subset
may be composed of a single target if the target is distant from others
in the state space.

The grouping operation is based on the following constrains:
∀ci ∈ Cj!Cp : ci ∈ Cp; ∀{ci, cl} ∈ Cj =⇒ d{ci, cl} < dM;
and ∀ci ∈ Cj , ci′ ∈ Cj′ =⇒ d{ci, ci′} > dM. Then all particles
whose label l corresponds to one of the indexes of the elements cj

(a) (b)

Fig. 3. Trajectories in datasets (a) D1 and (b) D2.

of a target cluster Cα are marked with the target cluster label l′ = α,

leading to the particle {ω(i)
k ,x(i)

k , p, l, l′}
The allocation of new particles is the last step of our approach.

Now that each particle is labelled, we can label new particles ac-
cording to the relation between measurement and actual multi-target
state estimation. The elements of C are compared with the elements
of Zk. For each pair {zi, cj} the Euclidean distance (over the po-
sition) di,j is computed and (di,j , i, j) is added to a list A. A cut
off distance dMAX is applied and all the states whose distance is
smaller than the threshold are deleted. The list is then sorted on
the distance parameter. Starting from the low distance di′,j′ a pair
{i′, j′} is selected and moved to an empty list B, and all the other
vectors containing i′ or j′ are deleted from the list. The process is
iterated to the end of the list. For each element of list B, ρ parti-
cles are generated through the Eq. (5), centered on the measurement
zi,k, labelled with j and allocated among processors. Additionally,
also for not associated measurements, ρ particles are generated and
labelled with available label indexes.

This pipeline enables intra-processor fragmentation while keep-
ing the dependency on update and resampling between particles of
the same target or group of targets.

4. PERFORMANCE ASSESSMENT

We compare the proposed approach (P-BD) with two parallelization
methods (P-NBC, P-NBD) for particle-based tracking [9] that dif-
fer in the way resampling is performed. The centralized resampling
is used in P-NBC, whereas distributed resampling with proportional
allocation is used in P-NBD. Both P-NBC and P-NBD perform par-
allelization without any contextual feedback from the tracking stage.
The prediction step is executed independently for each particle. The
update step requests the usual exchange of information between pro-
cessors. In P-NBC all processors send all the particle weights to
a single processor that performs the resampling and sends back the
resampling factor for each particle. In P-NBD each processor com-
putes the sum of the particles’ weights and sends this value to one
of the available processors that compares all the partial sums and
computes the number of particles available for each processor in the
resampling step. Next, each processor performs a separate resam-
pling.

We use two datasets (D1 and D2) for the evaluation: D1 contains
32 point targets moving on a 7000 × 7000 meter plane following
a constant velocity model and performing crossings or overtakings
(Fig. 3a). The frame rate is 1Hz for 500 scans/frames, targets veloc-
ity and acceleration are between 0 and 10m/s and 0 and 0.3m/s2,
respectively. We uniformly add clutter measurements (the nearest
integer to a value with mean µp = 4 and variance σp = 1) in an area
located between 0m and 500m meters in x position and 0m and
500m in y; D2 is the ground truth of a video sequence used in [10]
(Fig. 3 b) of which we analyze the first 500 frames. The frame rate is

6630

Table 1. Workload reduction (WR) between P-NBC and P-NBD
(WR1) and between P-NBD and P-BD (WR2) in dataset D1 and D2
for varying number of processors (Pr.) and particles (Pa.).

WR1 % WR2 % WR1 % WR2 %
Pr. Pa. D1 D2 D1 D2 Pa. D1 D2 D1 D2
2 100 63 67 40 46 200 68 72 59 62
4 100 86 87 24 26 200 88 92 40 46
8 100 95 95 11 13 200 95 96 24 27

25Hz and analyzed on the image plane of 720 by 576 pixel. We add
a random number (the nearest integer to a value normally distributed
with mean µp = 4 and variance σp = 1) of false positives in two
areas: the first area is a rectangle located between 0 and 85 pixels
in x position and between 320 and 576 in y and the second one be-
tween 320 and 450 pixels in x position and between 0 and 130 in
y. The measurements used in D1 and D2 by the tracker are the sum
of the targets’ states plus white Gaussian noise with mean µn and
variance σn. We corrupt the measurements to simulate the failure of
a detector. A random number (the round of a normally distributed
value with mean µc and variance σc) of false positive is added in
the proximity of a random number (normally distributed with mean
µct and variance σct) of measurements and where µc is obtained by
the nearest integer of the percentage pct of targets in the scene in the
considered instant. The clutter measurement is Gaussian distributed
around the selected measurements with mean µe = 0 and variance
σe = 0. The parameters used are µn = 0, σn = 2, pct = 6,
σct = 1, µc = 1, σc = 2, µe = 0 and σe = 5.

Performance evaluation is based on (i) the OSPA metric [11] to
account for cardinality and accuracy errors, (ii) the number of par-
ticles moved across processors, and (iii) the total mean workload
across all processors over time [12, 13]. The workload is evaluated
over the resampling step, which is the different part in the meth-
ods under analysis and has a non-linear behavior with respect to the
increase in the number of particles. The number of particles is as-
sociated to the workload with an empirical polynomial equation ob-
tained by interpolating particles over resampling time. This analysis
allows one to avoid potentially misleading results introduced by non-
optimal code implementation of the parallel framework.

Figure 4 shows the results of the evaluation using D1 and D2.
As for the mean particle transfer (Fig. 4 a,d) P-NBD outperforms P-
NBC and P-BD due to a more straightforward resampling approach.
The performance was evaluated on five trials. The mean workload
(Fig.4 b,e) shows the most interesting results where in both D1 and
D2 P-NBC has a higher workload value. In fact the resampling is
done by a single processor and it does not change as a function of
the number of processors. When the number of particles doubles,
the workload triples due to the non-linear behavior discussed ear-
lier. However, in both P-NBD and P-BD the workload decreases
considerably. Table 1 (second and third columns) shows the work-
load reduction between P-NBC and P-NBD. The reduction is most
significant when the number of particles is higher and in the case of
configurations with more processors. The fragmentation among pro-
cessors is useful for a large number of particles given the influence
in the particles split in the non-linearity behavior of the resampling.
The reduction rate is higher in D2 that has a larger number of targets.
P-BD outperforms P-NBD, as shown in the last two columns of Ta-
ble 1 due to the additional intra-processor fragmentation based on
target independence. In this case the intra-processor fragmentation
lead to an improved workload reduction when the number of parti-
cles grows. The reduction is larger in D2 when there are more targets
and more particles, whereas it decreases as the number of processors

P−NBC P−NBD P−BD
0

200

400

600

800

1000

algorithm

m
ea

n

of
 p

ar
tic

le
 tr

an
sf

er
ed

P−NBC P−NBD P−BD
0

200

400

600

800

1000

algorithm

m
ea

n

of
 p

ar
tic

le
 tr

an
sf

er
ed

(a) (d)

P−NBC P−NBD P−BD

10−1

100

algorithm

m
ea

n
w

or
kl

oa
d

P−NBC P−NBD P−BD

10−1

100

algorithm

m
ea

n
w

or
kl

oa
d

(b) (e)

P−NBC P−NBD P−BD
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

algorithm

m
ea

n
O

SP
A

P−NBC P−NBD P−BD
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

algorithm

m
ea

n
O

SP
A

(c) (f)

Fig. 4. Performance evaluation on dataset D1 (left column) and D2
(right column) for mean number of transferred particle (first row),
mean workload (second row) and mean OSPA (third row).

increases as, with a higher number of processors, the usefulness of
the intra-processor fragmentation becomes less significant.

In summary, P-NBC performs the resampling over a single pro-
cessor showing the worst workload condition, whereas P-NBD uses
the available processors showing a good workload reduction. The
advantages of P-BD are directly proportional to the number of par-
ticles and inversely proportional to the number of processors. P-BD
takes advantage of the tracking feedback to establish possible target
independence and performs intra-resampling by fragmenting data,
while reducing the computational complexity of resampling.

5. CONCLUSIONS

We proposed a P-PHD filter parallelization (P-BD) that is based on
the exploitation of the distribution of the particles in the multi-target
state space. The reduction of workload introduced by P-BD im-
proves with the increase of the number of particles, however it is less
useful when the number of processors grows because the influence of
the intra-resampling becomes less significant. Future research direc-
tions include considering the allocation of particles among proces-
sor while reducing the amount of communication; the investigation
of the limits over which the intra-fragmentation affects considerably
accuracy; and the implementation of the proposed framework in a
multi-processor platform [14].

6631

6. REFERENCES

[1] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Asso-
ciation, Accademic Press, 1988.

[2] Y. Bar-Shalom, X. Rong Li, and T. Kirubarajan, Estimation
with Applications to Tracking and Navigation, John Wiley &
Sons, 2001.

[3] E. Maggio and A. Cavallaro, Video Tracking: Theory and
Practice, John Wiley and Sons, 2011.

[4] B.N. Vo, S.R. Singh, and A. Doucet., “Sequential monte carlo
implementation of the phd filter for multi-target tracking.,” in
In Proceedings of the International Conference on Information
Fusion, Cairns, Australia, 2003.

[5] R. Mahler, “Multi-target bayes filter via first-order multi-target
moments.,” IEEE Transactions on Aereospace and Electronic
Systems, vol. 39, no. 4, pp. 1152–1178, April 2003.

[6] R. Mahler, “A theoretical foundation for the stein-winter prob-
ability hypothesis density (phd) multitarget tracking approach,”
in Proceedings of Sensor and Data Fusion, San Antonio, TX,
2000.

[7] E. Maggio, M. Taj, and A. Cavallaro, “Efficient multitarget
visual tracking using random finite sets,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 18, no. 8,
pp. 1016–1027, August 2008.

[8] Z. Shi, Y. Zheng, X. Bian, and Z. Yu, “Threshold based resam-
pling for higt-speed particle phd filter,” Progress in Ectromag-
netics Research, vol. 136, pp. 369–383, 2013.

[9] M. Bolic, P.M. Djuric, and S. Hong, “Resampling algorithms
and architectures for distributed particle filters,” IEEE Trans-
actions on Signal Processing, vol. 53, no. 7, pp. 2442–2450,
2005.

[10] J. Sochman and D. C. Hogg, “Who knows who - inverting
the social force model for finding groups,” in Proc. of IEEE
ICCVW, Barcelona, Spain, 2011.

[11] B. Ristic, V. Ba-Ngu, and D. Clark, “Performance evaluation of
multitarget tracking using the ospa metric,” in In Proceedings
of Information Fusion, Edinburgh, UK, July 2010.

[12] P. S. Pacheco, An introduction to parallel programming, Mor-
gan Kaupmann, 2011.

[13] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction
to Parallel Computing, Addison Wesley, 2003.

[14] P.G. Paulin, “OpenCL programming tools for the STHORM
multi-processor platform: Application to computer vision,” in
Proc. of International Forum on Embedded MPSoC and Mul-
ticore, Otsu, Japan, 2013.

6632

