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ABSTRACT

This paper proposes an optical flow algorithm by adapting Approxi-
mate Nearest Neighbor Fields (ANNF) to obtain a pixel level optical
flow between image sequence. Patch similarity based coherency is
performed to refine the ANNF maps. Further improvement in map-
ping between the two images are obtained by fusing bidirectional
ANNF maps between pair of images. Thus a highly accurate pixel
level flow is obtained between the pair of images. Using pyramidal
cost optimization, the pixel level optical flow is further optimized to
a sub-pixel level. The proposed approach is evaluated on the mid-
dlebury dataset and the performance obtained is comparable with
the state of the art approaches. Furthermore, the proposed approach
can be used to compute large displacement optical flow as evaluated
using MPI Sintel dataset.

Index Terms— Optical flow, Approximate Nearest Neighbor
Field, PatchMatch.

1. INTRODUCTION

Motion estimation of pixels in sequences of consecutive images is
called optical flow (OF) and it is widely utilized in various computer
vision algorithms including object detection, object tracking, mo-
tion estimation etc. Optical flow computation is a well established
problem which was introduced by Horn and Schunck [1]. Though
various researchers have contributed to develop accurate OF tech-
nique, the problem of fast and accurate OF is still not solved with re-
quired level of perfection. A study on Middlebury [2] dataset shows
that the real-time estimation of OF using CPUs is still not possible
with the existing algorithms. Some of the widely used algorithms
to compute optical flow are pyramidal LK optical flow [3], optical
flow using descriptor matching by Brox et al. [4] and optical flow by
solving pixel labelling problem as proposed by Lu et al. [5]. In this
proposed approach we adapt Approximate Nearest Neighbor Field
(ANNF) maps to compute the optical flow. The aim of ANNF algo-
rithm is to find the closest patch, in euclidean or any other relevant
space in source image, for every patch in target image, for a given
pair of source and target images. ANNF mappings find its applica-
tion in image super resolution [6], optic disk detection [7], image
retargetting [8], video segmentation [9] and other allied image ma-
nipulation algorithms also. In contrast to this conventional use of
ANNF mapping, we use ANNF maps to relate two successive im-
ages in an image sequence.

The organization of the paper is as follows: section. 2 gives
a brief description of state-of-the-art techniques in ANNF and OF
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computation. section. 3 describes the proposed algorithm in de-
tail. section. 4 shows the experimental results obtained using the
proposed approach in comparison with those obtained from other
approaches. The paper is concluded in section. 5.

2. RELATED WORK

Optical flow algorithm was initially formulated as an energy mini-
mization problem by Horn and Schunck [1]. It was done by optimiz-
ing the objective function containing data term and smoothness term.
Black and Anandan [10] improved upon this by introducing noncon-
vex robust penalty functions to reduce the outliers. Sun et al. [11]
empirically demonstrated the effectiveness of Charbonnier function
as penalty function, in optimizing the energy function. Large dis-
placement flow estimation using descriptor matching was introduced
by Brox et al. [4]. Xu et al. [12] proposed a new frame work taking
pixel-wise scales into consideration in optical flow estimation. Op-
tical flow using rank transform was introduced by Demetz et al. in
[13]. Lu et al. [5] formulated optical flow as a pixel labeling prob-
lem and proposed a generic Patch Match Filter (PMF) framework for
solving discrete multi-labeling problem. Chen et al. [14] formulated
motion estimation as a motion segmentation problem and obtained
the initial segmentation using approximate nearest neighbors. In-
troduction of deep matching in large displacement optical flow was
done by Weinzaepfel et al. [15].

PatchMatch [8] is an efficient algorithm for the computation of
ANNF maps. It is based on the concept of coherency between the
images i.e. if two patches are similar in a pair of images, then their
neighboring patches will also be similar. Further improving upon
PatchMatch, Korman et al. [16] proposed coherency sensitive hash-
ing, based on locality sensitive hashing functions. In a more recent
approach, Ramakanth et al. [17] [18] proposed FeatureMatch (FM),
using intelligent feature extraction in conjunction with kd-trees for
accurate and efficient ANNF computation. In the present work, we
extend the concepts proposed in FM to compute optical flow be-
tween two consecutive frames.

3. PROPOSED ALGORITHM

The proposed approach is described in detail in this section. Pro-
posed algorithm consists of three steps: (1) Approximate Nearest
Neighbour Field (ANNF) computation using FM (2) improving
ANNF mapping to obtain pixel-level accurate optical flow and (3)
flow refinement to obtain sub-pixel accurate optical flow.
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Algorithm 1 Optical flow using feature match
Input: Previous frame (I1), Current frame (I2).
Output: FinalFlow.
Pseudocode:
1: flow12 = FM(I1, I2)
2: flow21 = FM(I2, I1)
3: for AllP ixelsIn(I1) do
4: [maps] = FindMapping(flow21, i)
5: if Length(maps) > 1 then
6: flow′

12 = FindBestMap(maps, i)
7: end if
8: end for
9: PFlow = FindBestMap(flow′

12, flow12)
10: FinalF low = FlowRefinement(PFlow)

FM(Target, Source): FM computes ANNF mapping for every patch in target image to
source image.
FindMapping(flow, i): Function finds all the mappings that maps to ith pixel in I1.
FindBestMap(flow, i): Function finds the best map to ith pixel in I1.
FindBestMap(flow1, flow2): Function finds the best map from flows flow1 and
flow2 using Charbonnier penlty function as explained in section 3.1.
FlowRefinement(pixellevelflow): Refine the flow PFlow using flow refinement as
explained in section 3.3.

3.1. ANNF computation

The first step of the proposed algorithm is the computation of ANNF
using FM with the given sequence of images. To compute ANNF
mapping, FM algorithm [17] uses features extracted from p× p× 3
(ie. a p × p patch in RGB image) patches of the target and source
frames to compute the ANNF map. The features used in FM are as
follows:
•The mean of R, G, B color channels of the patch.
• The mean of x and y gradient of the patch.
• The first two frequency components of Walsh-Hadamard basis
(WH1, WH2) [19].
• The maximum value of the patch.
In addition to these FM features, x and y coordinates are also in-

cluded for the initialization of optical flow algorithm. Since the two
successive frames are closely related, the additional coordinate in-
formation improves the ANNF computation. These features are cho-
sen because, they can be computed efficiently using integral images.
These features were shown to be computationally efficient compared
to other dimension reduction techniques [17].

The initial ANNF map is noisy, and it is given in the literature
[17] that coherency between pair of images is an important feature
which determines the accuracy of ANNF maps. Coherency means,
if two patches from pair of images are similar then their neighboring
patches will also be similar. This problem can be ameliorated by
including a coherency stage after ANNF computation. Coherency
stage does this by selecting the flow that minimizes the error between
the two patches from consecutive frames using a Lorentzian penalty
function log(1 + x2

σ2 ) [10].

3.2. Flow fusion

As discussed in section 3.1, ANNF map in both directions between
the two images I1 (previous frame) and I2 (current frame), as shown
in the Fig. 1(a) and 1(b), will differ depending on the choice of
target and source images from the sequence of images. These bi-
directional flows are obtained by finding the nearest neighbours for
target image patches from the source image patches. The flow from
I1 to I2 (annf12) is obtained by making the image frame I1 as tar-
get. In the same way, the flow from frame I2 to I1 (annf21) is

(a) I1 (b) I2

(c) Pixel level flow after fusion (d) Error map after fusion

(e) Final optical flow (f) Ground Truth Flow

Fig. 1: Various Stages of proposed approach

obtained by making I2 as the target frame. The novelty of our al-
gorithm is to obtain the best mapping from I1 to I2, by utilizing
annf21 and annf12 . Let us consider the scenario in which the
pixel a1 is mapped to pixel a2, obtained from annf12. And pixel p2
is mapped to pixel a1, obtained from annf21. Here, from annf21
mapping we are getting additional information regarding the pixel
a1, that it is matching to pixel p2 as well. This way, along with
annf12, annf21 gives information regarding the matching pair for
all the pixels in I1. This additional information helps in filtering the
noisy annf12 mapping.

The initial flow using ANNF map which are similar in both
annf12 and annf21 can be considered as the true mapping from
frame I1 to I2. There may be cases when these are not similar and
annf21 has got more than one mapping to a patch in I1. In such
cases, the best map among the multiple mappings are found using
Charbonnier penalty function ρ(x) =

√
x2 + ε2 [20]. Thus a pixel

in I1 has got two candidate mappings, one is the map obtained from
annf12 and another is the best map obtained from the multiple map-
pings in annf21. The final mapping from these two mappings for
the pixel is obtained by minimizing Charbonnier penalty function .

3.3. Flow refinement

Estimation of pixel level flow between the images using FM are de-
scribed in previous sections. This section gives the description about
the steps involved in obtaining sub-pixel level accurate optical flow.
In order to obtain that, further refinement of the pixel level flow is re-
quired. This is done through a refinement stage using the improvised
optical flow model introduced by Sun et al.[11, 21].

The Eq. (1) is the improved objective function by Sun et al. [11]
which is used for the estimation of optical flow. It has got two parts,
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RubberWhale Dimetrodon Hydrangea Grove3 Urban3 Venus Grove2 Urban2
AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE

annf12 2.25 0.738 2.427 0.124 1.863 0.153 4.90 0.538 12.26 0.829 3.21 0.235 1.398 0.967 2.48 0.45
fusion 2.25 0.737 0.242 0.124 1.862 0.153 4.79 0.498 11.00 0.99 3.168 0.234 1.396 0.968 2.31 0.443

Table 1: Error comparison for different initialization strategies

RubberWhale Dimetrodon Hydrangea Grove3 Urban3 Venus Grove2 Urban2
AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE

Lorentzian 2.25 0.737 0.242 0.124 1.862 0.153 4.79 0.498 11.00 0.99 3.168 0.234 1.396 0.968 2.31 0.443
Charbonnier 2.25 0.738 0.242 0.124 1.864 0.153 4.77 0.498 11.107 1.109 3.197 0.235 1.40 0.972 2.53 0.633

Squared norm 2.23 0.737 0.242 0.124 1.862 1.535 5.22 0.576 11.008 0.99 3.168 0.234 1.39 0.968 2.55 0.635
without

coherency 2.25 0.738 0.242 0.124 1.86 0.153 4.86 4.96 18.743 2.69 3.200 0.23 1.39 0.96 9.87 0.403

Table 2: Error comparison for different cost functions in coherency stage

the one inside the curly braces is the data term and the other is the
coupling term. The optimization of objective function is done by
treating each term separately.

E(u, v, û, v̂) =
∑
i,j

{ρd(I1(i, j)− I2(i+ ui.j , j + vi,j))

+λ1[ρs(ui,j −ui+1,j) + ρs(ui,j −ui,j+1)
+ ρs(vi,j − vi+1,j) + ρs(vi,j − vi,j+1)]}
+λ2(‖u− û‖2 + ‖v − v̂‖2)
+
∑
i,j

∑
(i′,j′)∈N(i,j)

λ3(|ûi,j − ûi′,j′ |+ |v̂i,j − v̂i′,j′ |)

(1)

Here u and v are the horizontal and vertical components respec-
tively of the optical flow; λ1, λ2, λ3 are the regularization param-
eters, ρd and ρs are the penalty functions respectively for the data
and flow terms. The formal connection between the coupling term
and median filtering is provided by Li and Osher [22]. Hence, solv-
ing Eq. (1) includes, obtaining the flow that optimizes the data term
and performing a weighted median on the obtained flow. The de-
tailed explanation about the optimization is given in the literature on
secrets of optical flow by Sun et al. [11, 21]

Figure (1) shows the output from different stages of the proposed
algorithm. Figures 1(a) and 1(b) are the two consecutive frames of
the sequence. Flow obtained using the fusion of ANNF mapping is
shown in the Fig. 1(c). Figure 1(d) shows the pixel level accuracy
compared to the ground truth flow. Experimentally it is observed
that, we are able to get 90% pixel level accuracy at this stage of
algorithm. Figure 1(e) gives the final optical flow using the proposed
algorithm and Fig. 1(f) shows the ground truth. The pseudo-code for
the proposed algorithm is given in Algorithm 1.

4. EXPERIMENTATION AND RESULTS

The proposed optical flow algorithm was evaluated using the Mid-
dlebury flow benchmark [23]. The algorithm is implemented using
MATLAB, on Intel i7 CPU with 3.4 GHz processor and 8GB RAM.
With the current CPU implementation, the whole program takes 215
sec running time to compute a sub-pixel flow field for an image pair
with resolution 640×480, for instance, the Urban sequence. FM
algorithm takes patches with a size (p × p) of 8×8, to extract 10 D
features from target and source images. Lorentzian function sigma
values, σd = 1.5 and σs = 0.03 are chosen for the data term and
spatial term in Eq. 1, in the coherency stage.

4.1. Quantitative Evaluation

In this section, we discuss the various experiments conducted and
the comparison of proposed approach with other optical flow al-

Grove2 RubberWhale

Fig. 3: Comparison of flow visualization result for Middlebury train-
ing sequence using the proposed algorithm (right) and ground truth
(left)

gorithms. Average angle error (AAE) and average end point error
(AEE) are the two error measures used for the evaluation of dataset.
The following Eq. (2), (3) are used for computing these errors:

AE = cos−1

(
1.0 + u ∗ uGT + v ∗ vGT√

1.0 + u2 + v2
√

1.0 + u2
GT + v2GT

)
(2)

EE =
√

(u− uGT )2 + (v − vGT )2 (3)

where (u, v) is the flow obtained using the proposed algorithm and
(uGT , vGT ) is the ground truth flow. Apart from two error measures,
other qualitative measurements for the test data are available in eval-
uation section of middlebury website [23].

Table (1) shows the error values for the final optical flow on
Middlebury training dataset with different ANNF initialization. For
the first experiment, ANNF initialization is done using the map-
ping from first image to second image only. For the second experi-
ment, mappings from first to second and vice versa, are considered.
Among these, the best flow is taken as discussed in section 3.2. It can
be inferred from the table that the error is less in the case of initial-
ization with ANNF fusion, especially in the case of sequences like
Urban3 and Grove3, which have large motion. The error variation
can be observed from table (1).

Table (2) shows the effect of using different cost function in the
coherency stage. It is clear from the table that the error values are
almost similar in all the three cases. Only in Urban sequence we can
see a significant variation in AAE and AEE. If we take the average
error considering all the training dataset, Lorentzian outperforms all
the other cost functions. Hence we have used Lorentzian as the cost
function for the evaluation of the dataset.

Table (3) shows the comparison of the proposed approach with
the existing state of the art approaches. It can be observed that the
proposed approach performs much better than the recently proposed
algorithms in all the test sequences.
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Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
Methods AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE AAE AEE

Proposed method 3.12 0.08 3.25 0.24 3.01 0.24 2.56 0.14 2.75 0.64 3.65 1.99 2.62 0.15 2.66 0.58
Deepflow flow [15] 4.49 0.12 4.26 0.28 5.96 0.44 4.89 0.26 2.98 0.81 3.26 0.38 2.09 0.11 5.83 0.93

CRT flow [13] 4.18 0.11 3.22 0.24 6.20 0.50 4.21 0.23 3.32 0.86 7.43 0.60 2.55 0.12 4.60 0.79
SIOF flow [12] 4.23 0.11 3.97 0.27 7.81 0.60 4.82 0.25 3.54 0.97 4.31 0.43 2.36 0.13 3.46 0.76
LDOF flow [4] 4.60 0.12 4.67 0.32 5.63 0.43 5.80 0.45 3.52 1.01 4.84 1.10 2.46 0.12 4.85 0.94
Classic NL [11] 3.20 0.08 3.02 0.22 3.46 0.29 2.78 0.15 2.83 0.64 3.40 0.52 2.87 0.16 1.67 0.49

Table 3: Error comparison of, our flow with different Optical flow methods in middlebury test dataset

Army Backyard Basketball Dumptruck

Evergreen Grove Wooden Mequon

Schefflera Teddy Urban Yosemite

Fig. 2: Comparison of flow visualization results for Middlebury test dataset using the proposed algorithm (left) and Deepflow [15] (right).

Alley2

Bamboo2

Fig. 4: Comparison of flow visualization result for MPI Sintel train-
ing sequence using the proposed algorithm (right) and ground truth
(left).

(b) Groundtruth flow (b) Optical flow result obtained

Fig. 5: Comparison of Ground truth optical flow and the result ob-
tained using the proposed. The box shows the occluded region in
which the algorithm fails to capture the flow.

4.2. Qualitative Evaluation

Figure (3) shows the flow result for Middlebury training sequence
using the proposed algorithm in comparison with the Ground truth.
The figure is obtained using the flow color coding provided by Mid-
dlebury dataset. We have tried the algorithm on MPI Sintel dataset
[24] as well. MPI Sintel datasets are used for the evaluation of large
displacement optical flows. Figure (4) shows the flow result ob-
tained using the proposed algorithm and the ground truth in MPI
Sintel dataset. This shows that the algorithm is able to capture large
motions as well. Comparison of Flow visualization results for the
proposed algorithm with Deepflow [15] is shown in the Fig. (2). As
shown in Fig. (5), the proposed algorithm has difficulties in handling
corners with multiple edges. The regions shown in green and blue
boxes represent areas where high error is observed.

5. CONCLUSION

In this paper we have proposed an algorithm for computing opti-
cal flow by adapting ANNF. This approach uses FM algorithm for
computing the ANNF. Noisy ANNF is filtered using flow fusion.
Pixel level flows obtained by flow fusion are refined using pyrami-
dal cost optimization. The algorithm is evaluated using Middlebury
test dataset. We also tried our algorithm on MPI Sintel, a large dis-
placement optical flow dataset. The proposed algorithm shows bet-
ter performance for both small and large displacement optical flow
compared to the state-of-the-art algorithms.
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