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ABSTRACT

We describe a novel system for vehicle speed estimation
from videos captured in urban roadways. Our system uses
text detection to locate the license plates of passing vehicles,
which are then used to select stable features for tracking. The
tracked features are then filtered and rectified for perspec-
tive distortion. Vehicle speed is estimated by comparing the
trajectory of the tracked features to known real world mea-
sures. In experiments performed on videos captured under
real operation conditions, our system attained a precision of
0.87 and a recall of 0.92 for license plate detection. Vehicle
speeds were estimated with an average error of 0.59 km/h,
staying inside the +2/-3 km/h limit, determined by regulatory
authorities in several countries, in over 75% of the cases.

Index Terms— Vehicle speed estimation, license plate
detection, text detection, feature tracking.

1. INTRODUCTION

Determining vehicle speed is an important task for urban traf-
fic surveillance. The information may be used not only to
issue fines when drivers exceed speed limits, but also to feed
systems such as traffic controllers.

Vehicle speed can be measured by intrusive or non-
intrusive technologies. Intrusive systems, usually based on
inductive loop detectors, are highly sensible and accurate,
but have high installation costs and can damage the roadway.
Non-intrusive systems are mostly based on laser sensors, in-
frared sensors, Doppler radar, or audio based sensors [1, 2].
They can be portable, but are expensive and require frequent
maintenance. In many cities, inductive loop detectors are
installed along with cameras, which are used to identify the
license plates of vehicles that exceed the speed limit. If the
speed information can be extracted from the already avail-
able image data, we may obtain a non-intrusive system with
significantly reduced costs.

In this paper, we describe a novel system for estimat-
ing vehicle speed from videos captured in urban roadways.
The system’s pipeline is shown in Fig. 1. First, a text detec-
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tor [3, 4] is used to detect the license plates of passing ve-
hicles. Stable features inside the detected regions are then
tracked, using a combination of the SIFT [5] and KLT [6]
algorithms. After filtering out inconsistencies, the vehicle
speed is estimated by comparing feature trajectories to known
real world measures, which allow us to rectify the perspec-
tive distortion and obtain a meter-per-pixel relation. To our
knowledge, our system is the first to estimate vehicle speed
by tracking corner and region features extracted from the li-
cense plate.

To evaluate our system, we used videos captured under
real operation conditions associated with ground truth data
obtained by an inductive loop detector. Our system attained
0.87 precision and a 0.92 recall for license plate detection.
Vehicle speed was estimated with average error of 0.59 km/h,
staying inside the +2/-3 km/h limit determined by regulatory
authorities in several countries [7], in over 75% of the cases.
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Fig. 1. Overview of the proposed system.

This paper is divided as follows. In Section 2, we discuss
previous work. Our approach is described in Section 3, and
its experimental evaluation is reported in Section 4. Section 5
concludes the paper and gives directions for future work.

2. RELATED WORK

Several methods were proposed to estimate the speed of ve-
hicles in highways [1, 8, 9, 10, 11, 12, 13]. All these methods
are based on background subtraction and blob detection tech-
niques, with the speed being estimated from the displacement
of blobs (considering the centroid or part of the contour). This
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kind of approach requires that the camera is distant enough
from the scene so that it is possible to identify the entire ve-
hicle. Our method works in a different scenario, with the
camera being closer to the vehicles. That makes blob anal-
ysis very sensitive to lighting variations and shadows, with
the limits of the vehicles becoming hard to determine. On the
other hand, the closer view makes it possible for our approach
to detect and track stable features inside the license plate re-
gion. These differences prevent a direct comparison between
our system and the above mentioned work.

Many methods were proposed for detecting license plates
[14, 15, 16]. These methods analyze connected components,
edges, straight segments and textures; detecting the bound-
aries or the characters of the license plate. References [15, 16]
give an overview of the problem and existing solutions. Al-
though our system depends on license plate detection, this pa-
per concentrates on the problem of determining vehicle speed
based on features extracted from inside the license plate re-
gion. Other license plate detectors could be used without
changing the structure of our system.

3. PROPOSED APPROACH

3.1. License Plate Detection

License plate detection is crucial to our system’s perfor-
mance. For this task we use SNOOPERTEXT [3], publicly
available at [4], a state-of-the-art algorithm for detecting text
in urban scenes (such as building numbers, billboards, etc.).
Several parameters of the detector were selected to improve
its performance for detecting license plates. As shown in
Fig. 2, the SNOOPERTEXT detector consists of four main
modules: image segmentation, character filtering, character
grouping, and text region filtering [17].

(a) Input image (b) Image segmentation

(c) Character filtering (d) Grouping

Fig. 2. License plate detection by SNOOPERTEXT.

The segmentation algorithm used by SNOOPERTEXT [18]
is a modified version of Serra’s toggle mapping [19], an op-
erator for local contrast enhancement and thresholding that
uses the local foreground and background levels (Fig. 2 (b)).
In order to find bright text on dark background, the segmen-

tation is repeated on the negative (pixel-wise complemented)
image. This second stage can be ignored if the license plates
always have dark characters on bright background (that varies
from country to country). That can considerably decrease the
computation effort, and also helps avoiding false detections.

The segmented foreground regions are filtered based on
simple geometric criteria (area, width and height) and clas-
sified as character/non-character, based on shape descriptors
trained on a dataset of segmented letters (Fig. 2 (c)). The
remaining regions are then grouped to form the candidate li-
cense plate regions (Fig. 2 (d)).

All these steps are performed in a multi-scale fashion, in
order to efficiently handle different character sizes, to sup-
press irrelevant detail and to avoid the use of overly large ker-
nels in the segmentation. Note that, depending on the camera
position and video frame size, we do not need more than 2
pyramid levels to detect license plates — opposed to the 5
levels needed in a free context scenario.

In the last step, candidate text regions are validated by
a binary text/non-text region classifier that rejects candidate
regions that do not appear to contain a single line of text. This
classifier uses the T-HOG descriptor [17], which is based on
the multi-cell Histogram of Oriented Gradients (HOG) [20].

3.2. Feature Extraction and Tracking

After a vehicle’s license plate is detected in a frame, our sys-
tem extracts features from the license plate region, and tracks
these features across frames. The license plate region is used
only once for each vehicle, to determine the set of features
to be tracked. To extract and track features, we combine the
Kanade-Lucas-Tomas (KLT) [21, 6] and the Scale-Invariant
Feature Transform (SIFT) [5] algorithms.

Features are extracted as described by Shi and Tomasi [22].
A “good” feature is a region with high intensity variation in
both x and y directions, such as textured regions or corners.
Let [Ix Iy] = ∇I = [∂I/∂x ∂I/∂y] be the image derivatives
in the x and y directions of I and Z a 2× 2 matrix given by

Z =
∑
W

[
Ix

2 IxIy
IxIy Iy

2

]
(1)

where W is a window with n × n pixels centered on some
pixel within the license plate region. The region covered by
the window is selected if both eigenvalues of Z are above a
given threshold (set as 1 in our system).

To track the selected features with subpixel accuracy we
have used the pyramidal KLT algorithm [23]. Let I and J be
two successive video frames. The KLT algorithm takes I , J
and a set of n template regions T{1,2,...,n} ∈ I with n × n
pixels covered by a small image window W that contains the
features to be sought. For each selected template Ti centered
at u = (x, y), it returns an adjusted position d = (x′, y′)
on J such that the neighborhood W of u + d in J is most
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similar to Ti. That is, it finds the displacement d which min-
imizes

∑
W [J(u + d) − I(u)]2. The maximum pixel dis-

placement d that the pyramidal KLT can handle is given by
d = (2`+1 − 1)δ, where ` is the number of pyramid levels
and δ is the pixel motion allowed by elementary optical flow
computation (of the order of one pixel). That is, as noted by
Bouguet [23], for ` = 3 the maximum displacement that can
be found is about 15 pixels. However, depending on the ve-
hicle speed and the video frame rate, this can be insufficient.
To circumvent this problem, we need an initial estimation of
the vehicle speed. This estimation is obtained by computing
SIFT features within the first occurrence of the license plate
region and matching them in the next frame.

The average region displacement found by the SIFT
matching is used as a guessed position for the KLT algo-
rithm. That is, we compute a rough prediction of the vehicle
displacement d in the next frame by using the SIFT, this dis-
placement is further refined with sub-pixel accuracy by the
KLT algorithm, in order to find the best displacement d. Note
that the SIFT features are used only for the initial estimate,
when the license plate is first detected — for the remaining
frames, the prediction is computed from the average region
displacement found by KLT, since we already have a coarse
estimative of the vehicle speed.

3.3. Outlier Rejection

As described in Section 3.2, from the motion of each tem-
plate region Ti in a consecutive pair of frames, we extract a
motion vector di = (x, y). In order to discard motion vectors
that correspond to mismatches, i.e. outliers, we compute the
mean and standard deviation of the displacements in the x and
y axes, discarding motion vectors outside the three-sigma de-
viation in any direction. This procedure is repeated until the
standard deviation in both x and y axes become smaller than
0.5 pixel. The process is exemplified in Fig. 3.

(a) (b) (c)

Fig. 3. Outlier rejection: (a) motion vectors; (b) outliers elim-
ination (fourth iteration); (c) final result (fifth iteration).

3.4. Vehicle Speed Estimation

Vehicle speed estimation starts from the second frame, after
the detection of the license plate, and is based on the features
tracked by the KLT algorithm. For each new frame, each
tracked feature (except the outliers) will result in a motion
vector di = (x, y) in pixels per frame. In order to convert the
motion vector to a velocity vector — in meters per second —

we have to determine a relationship between the pixel motion
in the image and the motion in the real world.

As the images acquired by the camera have perspective
distortion, we first rectify the image [24], as shown on Fig. 4.
For each motion vector di we compute a new motion vec-
tor ri using an homography matrix and a set of known ref-
erence distances measured from the roadway (highlighted in
Fig. 4). The rectified motion vector has a constant meter-per-
pixel factor M . Then, for each adjacent pair of frames, a
rectified motion vector R = (xr, yr) is calculated by the av-
erage of all ri. The norm of R is given by ‖R‖ =

√
x2r + y2r ,

and real displacement in meters by D = ‖R‖ /M , where D
is the displacement in meters. Finally, the vehicle speed s in
km/h is computed by s = 3.6D

T , where T is the frame interval
in seconds. Note that rectification is performed only for the
motion vectors — the features are still tracked in the original
input images.

(a) (b)

Fig. 4. Image rectification: (a) original image with perspec-
tive effect; (b) image rectified.

4. EXPERIMENTAL EVALUATION

For our tests, we collected a dataset with 75 vehicle sequences
from a urban road lane with associated ground truth speed.
Our dataset was acquired from a video, with frame resolution
of 768×480 pixels and 31.25 frames per second. The ground
truth speeds were obtained from a high precision speed me-
ter inductive loop detector, properly calibrated and approved
by a national metrology agency. The dataset vehicle speed
distribution is shown in Fig. 5.
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Fig. 5. Dataset vehicle speed distribution.

4.1. License Plate Detection Performance

We measure the license plate detection performance in terms
of precision (P ) — the proportion of detected objects that
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were indeed license plates — and recall (R) — the proportion
of license plates that were detected. As only the first occur-
rence of each license plate is used by our system to extract and
track features, all measures consider only the frame in which
the first detection have occurred.

Let r be the rectangular region detected as a license plate,
and s be the real license plate region in the image. A true pos-
itive (TP ) is counted if A(r∩ s)/A(r∪ s) > 0.7, where A(t)
is the area of the smallest rectangle enclosing a set t. Oth-
erwise, we have a false positive (FP ). A false negative FN
refers to a missed license plate and a true negative TN refers
to a vehicle without license plate. From these indicators, we
have P = TP/(TP + FP ) and R = TP/(TP + FN).

The overall precision and recall of our system, consider-
ing all the vehicle sequences, were P = 0.87 and R = 0.92
respectively (for TP = 60, FP = 9, FN = 5 and TN = 1).
The F-measure (the harmonic mean of P and R), given by
F = 2/(1/P + 1/R), was F = 0.90. Some samples of li-
cense plates found by character detection are shown in Fig. 6.

Fig. 6. Samples of license plates found by character detection.

The detection errors were mainly due to: motorcycles,
with license plate characters too small to be detected (less
than 9 pixels tall); false positives detected together with the
correct plate; license plates in poor condition. See Fig 7.

Fig. 7. License plate detection errors.

4.2. Speed Estimation Performance

The speed performance was computed by comparing the es-
timated speed, returned by our system, with the ground truth
speed. See Fig. 8. The average error, for the whole dataset,
was 0.59 km/h with a standard deviation of 1.63 km/h. Some
samples of speed estimation are shown in Fig 9.

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60  70

S
p

ee
d
 i

n
 k

il
o

m
et

er
s 

p
er

 h
o

u
r 

(k
m

/h
)

Vehicles sequence.

Real speed
Estimated speed

Fig. 8. Vehicle speed performance: estimated speed (black
squares) and the ground-truth (red circles).

21.2 km/h (real 22 km/h) 28.1 km/h (real 28 km/h) 31.84 km/h (real 33 km/h)

52.5 km/h (real 53 km/h) 13.52 km/h (real 16 km/h) 43.7 km/h (real 44 km/h)

57.29 km/h (real 56 km/h) 45.1 km/h (real 45 km/h) 50.05 km/h (real 51 km/h)

Fig. 9. Speed estimation for those vehicles shown in Fig. 6.
Their real speed, obtained by an inductive loop detector, are
shown in brackets. The magnitude of the motion vectors
(white lines) are proportional to the vehicle speed.

The maximum nominal speed error values for the whole
dataset were −3.24 km/h and +3.91 km/h.

5. CONCLUSIONS

In this paper, we described a novel system for vehicle speed
estimation from videos captured in urban roadways. Our ex-
periments have shown that, using an ordinary camera, with
resolution of 768 × 480 pixels and 31.25 frames per second,
the proposed system was able to successfully detect most li-
cense plates, robustly tracking features and estimating vehicle
speeds using a combination of the SIFT and KLT algorithms.

As future work, we intend to perform character recogni-
tion on the detected license plates in order to create a traffic
speed control system with integrated surveillance tools, e.g. to
analyze the traffic flow, to identify stolen vehicles, etc.
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