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ABSTRACT

This paper presents an automatic and efficient system for ex-
tracting dynamic objects of interest from videos. We take
advantage of a saliency map and an optimization-based seg-
mentation algorithm to extract the foreground objects auto-
matically in some key frames. Then, the segmentation re-
sults in those key frames are propagated to other frames via
an error map-based propagation scheme. Finally, a Bayesian
matting-based refinement approach is employed to to handle
the topology changes. Experiments show that our system is
able to generate high quality results at a low computation cost.

Index Terms— Foreground extraction, foreground object

1. INTRODUCTION

Foreground extraction refers to the problem of extracting
foreground objects from images and videos. It is one of the
fundamental problems in image processing field, and has at-
tracted intensive attentions from both academia and industry.

Although tremendous progress has been made in the field
of video segmentation/matting in the past two decades, pre-
vious approaches mainly focus on accuracy while fail to take
efficiency into consideration. On one hand, most matting sys-
tems rely heavily an accurate trimap (an initial segmentation
result), which is always obtained though intensive user inter-
action, such as some video cutout systems [1, 2, 3, 4]. On
the other hand, user interaction is often required to refine the
matting details in the non-key frames when using a frame-by-
frame propagation strategy. The bilayer segmentation system
[5], for example, employs much interaction in local refine-
ment when a good matte cannot be produced by propagating
the results from key frames to non-key frames.

Therefore, in this paper we aim at developing an automat-
ic and efficient system for accurately extracting foreground
objects from videos. The balance between accuracy and effi-
ciency is sought through a set of techniques. First, a saliency
map is used to initialize the foreground region in some key
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frames. Then the foreground object is extracted by a GrabCut-
based optimization scheme. With the help of salient object de-
tection and optimization-based segmentation, the extraction
results in key frames are generated automatically. Secondly,
we propose an intelligent strategy to automatically propagate
the accurate segmentation results through an error map and
refine the details in each intermediate frame. The propaga-
tion unit consists of two parts: the color learning model and
motion learning model, which model the color and topology
changes, respectively. Once the changes are too big, the local
refinement unit is used to handle the occlusion, dis-occlusion,
and motion blur.

Experimental results show that our proposed system has
not only a low computation cost and requires no user interac-
tion, but also comparable accuracy with state-of-the-art algo-
rithms.

1.1. Related Works

This paper is related to research on video matting, especial-
ly video object cutout. A survey on video matting can be
found in [6]. Generally, various image matting methods, such
as Bayesian Matting [7], Poisson Matting [8], Random Walk
Matting [9], Closed-form Matting [10], Easy Matting [11],
and Robust Matting [12], can be extended to videos by adopt-
ing a two-step framework [2]. Recently, a tri-level propaga-
tion approach [13] is proposed to deal with regions with topol-
ogy changes. Video object cutout systems, such as [1, 2, 14],
combine the motion and color models together to propagate
well-segmented key frame results to non-key frames. Howev-
er, they usually require intensive user interaction to refine the
regions with similar appearance between the foreground and
background.

2. SALIENCY-BASED SEGMENTATION

We first show how to obtain the accurate segmentations on
some key frames in this section, and then propagate the re-
sults from key frames to in-between frames in Section 3. Key
frames are typically sampled at ten-frame intervals, but the
sampling rate may vary according to object motion. For s-
lower moving or deforming objects, a lower sampling rate
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Fig. 1. Salient object detection results. First row: video
frames; second row: generated saliency maps: third row:
bounding boxes of the salient regions.

may be used.

2.1. Salient Region Detection

In this subsection, we show how to extract the initial rough
foreground region with a salient region detection algorithm
[15].

Some key frames are typically sampled every T frames (a
typical value of 10 is used in our system). The sampling rate
can also vary according to the object motion. Then we use
the center surround method [16] to detect the salient region
in key frames. Specifically, the saliency value of a pixel x in
image I is given by the weighted distance of the histograms
in the central and surrounding regions containing x:

f(x, I) ∝
∑

{y|x∈R?(y)}

ωxyχ
2(R?(y), R?s(y)), (1)

where Rs is the surrounding region with the same area of
neighbor region R, R?(y) is the most distinct rectangle cen-
tered at pixel y:

R?(y) = arg max
R(y)

χ2(R(y), Rs(y)), (2)

where ωxy = exp(− ||x−y||
2
2

2σ2
y

) is the Gaussian weight function

parameterized by variance σ2
y , and χ2(x, y) = 1

2

∑
i

(xi−yi)2
xi+yi

is the Chi-square distance.
Afterwards, a morphological opening operation (the dila-

tion of the erosion) is applied to the saliency map to remove
noise, especially small objects from the foreground. Then the
salient region is regarded as the initial foreground object. As
shown in Figure 1, a bounding box of the salient region is
computed to indicate the foreground region. If there are mul-
tiple rectangles, we just select the largest one.

2.2. Optimization-based Segmentation

After obtaining the rough foreground region in Section 2.1,
we employ an optimization-based framework to segment the

foreground object more accurately, where temporal coherence
between frames is also taken into consideration.

Before introducing the segmentation details, we formulate
the problem as follows. Consider a graph F = V ∪E, where
V is a set of nodes (i.e., pixels) in the frames, E contains two
kinds of edges: EI connecting nodes within a frame, and EB
connecting nodes between adjacent key frames [1]. Mathe-
matically, video object extraction is viewed as a soft labeling
problem. We use an energy minimization formulation similar
to GrabCut [17] to solve this problem.

First, given the initial foreground region, two types of
Gaussian Mixture Models (GMMs) are constructed, one for
the background and the other for the foreground. Then we la-
bel each pixel x with α ∈ [0, 1] by minimizing the following
energy function:∑

x∈EI

DI(α, k, z; θ) +
∑
x∈EB

DB(α, k, z; θ) + λDϕ, (3)

where DI and DB represent the cost of edges in frames and
between frames, respectively.

D{I,B} = − log p(zx|αx, kx; θ)− logw(αx, kx), (4)

where p(·) is a Gaussian distribution parameterized by θ, w(·)
is the mixture weight, and x is the pixel index, zx is the pixel
color, kx is the most likely GMM component for each pixel,
and θ is learned from image data z. The smooth termDϕ with
weight λ ensures the temporal coherence across frames:

Dϕ =
∑
x∈Ω

ϕ(|∇C|)|∇α|2, (5)

where ∇C represents the gradient of the observation image,
Ω is the unknown region, function ϕ(·) ∝ 1

max(·,ε) is used
to modulate the smoothness term, and ε is a small positive
number preventing ϕ(·) from becoming infinite.

3. PROPAGATION AND REFINEMENT

In this section, we show how to propagate the accurate extrac-
tion results of key frames in Section 2 to in-between frames,
and refine the unmatched regions to obtain the final results.

3.1. Error Map-based Propagation

Inspired by previous frame-to-frame propagation strategy in
[4], we design our propagation algorithm as follows. We first
detect both the Harris corner points and SURF [18] points in
previous key frame Ii, and track them in non-key frame It
by using a standard KLT tracker [19]. To remove the global
motion, a homograph matrix between Ii and It is estimated
with the RANSAC method [20]. Then, the forward error map
Eft is computed as the color difference between the aligned
previous key frame and frame It. The backward error mapEbt
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Fig. 2. The propagation process. The marked regions in each
image is matched precisely with those in the key frames.

between frame It and the following key frame Ii+1 is com-
puted in a similar way. We combine Eft and Ebt together to
obtain the final error map Et as in [4]. Connected pixels in
Et forms a connect region set Crt . Pixels whose connected
region area is greater than a threshold e (e = 30 in our sys-
tem) are regarded as topology change region, which is refined
in Section 3.2.

In terms of pixels with a lower region area in Crt , which
usually means the topology changes are small, we compute
their mattes through m nearest N ∗N windows (N = 9 and
m = 10 in our system) located near the corresponding pixel
position in Ii. The foreground color probability pf (x) and
background color probability pb(x) for pixel x are computed
as:

pf (x) = exp(−Σmi=1||lt+1(x)− lt(fi)||2

m · δ
), (6)

pb(x) = exp(−Σmi=1||lt+1(x)− lt(bi)||2

m · δ
). (7)

where l(x) is the color values of x in RGB space, and m is
the number of pixels whose color value are closet to l(x).

The normalized foreground probability p(x) is defined as:

p(x) =
pf (x)

pf (x) + pb(x)
(8)

With the computed foreground probability p(x), pixel x is
label as foreground if p(x) > 0.5; otherwise x is background.
One coarse segmentation result is shown in Figure 3.

In addition, we find that pixels who move a lot with re-
spect to the global motion may fit a local motion model.
Therefore, it is not necessary to use the complex local refine-
ment for segmenting these pixels. We can estimate a local
homography matrix for a local region. Then, Equation (6),
(7), and (8) are used to estimate the segmentation result for a
region whose local movement is small.

3.2. Local Refinement

The propagation approach described in Section 3.1 does not
process the regions where topology changes a lot, i.e., whose

ca
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Fig. 3. The refinement process. (a) The key frame. (b) An
intermediate frame with the error map marked in red. (c) the
coarse result after propagation. (d) the refined result.

color difference in the error map is big. From our observa-
tion, three situations may result in topology changes: occlu-
sions, dis-occlusions, and motion blur caused by fast moving.
Occlusions happen when features which appear in previous
frame are not presented in current frame, and the other way
around in dis-occlusions. Occlusions and dis-occlusions do
not cause color contrast changes, while motion blur does. If
these three situations are not detected, we use the Bayesian
matting [7] to refine these local regions.

In terms of occlusions, we refine them via following steps:

1. Decide whether this region contains foreground bound-
ary or not. If it is inside the foreground, go to step 2;
otherwise, go to step 3.

2. Decide whether the occlusion causes background ex-
posure by comparing with the background color model
in Section 3.1. If it does, assign the exposed pixels to
background.

3. Consider pixels in a narrow band around the current
foreground boundary, and pixels in the original m ∗m
window. Use previous GMMs to compute the probabil-
ities that pixels belongs to background or foreground.
Since the boundary is clear and solid, there is no need
to use the complicated Bayesian matting method.

Dis-occlusions are processed in a similar way. The on-
ly difference lies in step 2, which is to decide whether the
dis-occlusions cause foreground exposure by comparing with
the foreground color model, and label the exposed pixels as
foreground.

Local refinement in the blurred region is difficult to deal
with. In such regions, GMMs do not work due to the similar
color distribution between foreground and background. How-
ever, we can perform segmentation in these blurred regions
by finding the corresponding regions in key frames. Some re-
gions in key frame Ii corresponding to the blurred region in
frame It can be roughly found according to the KLT tracking
result. Then, we use a Gaussian kernel to blur these regions.
By comparing with the blurred region in frame It, we regard
the region in key frame Ii with a lowest color difference as a
reference for segmentation. An example of local refinement
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Fig. 5. One comparison example for different methods.

is shown in Figure 3.

4. EXPERIMENTS

We have conducted extensive experiments on a PC with
3.3GHz CPU and 4GB memory. All the input video se-
quences are downloaded from the Docume channel on Youku
website. As shown in Figure 4, we can see that our system
is able to achieve accurate extraction results. Table 1 shows
the computation cost at each step of the four videos. The
total processing time per frame is about 0.2 ∼ 0.4 second.
If only Bayesian matting is applied to the whole video, it
will take 50 ∼ 100 seconds to obtain a matte for each frame.
The average compute times compared with different matting
methods are shown in Table 2. Therefore, our system is of
efficiency. It is possible to achieve a real-time performance
via GPU programming. In addition, the whole system runs
automatically and does not require any user input.

#1 #2 #3 #4
Width 1280 640 512 1280
Height 720 352 288 720
Frames 98 155 160 82

Key frames 10 15 15 8
Saliency map(ms) 61.1 35.4 28.1 58.3
Segmentation(ms) 153.1 63.2 57.1 98.7
Refinement(ms) 97.2 36.4 28.6 74.4
Propagation(ms) 71.4 24.8 21.8 61.6

Table 1. Computation cost at each step for four videos.

We also provide a quantitative evaluation on matting accu-
racy. Eight algorithms on 24 test images are compared with
our approach on the same trimaps. We compute the Mean
Squared Error (MSE) between the estimated mattes and the
groundtruth in each image. The evaluation result contains t-
wo indicators: accuracy and robustness. The accuracy repre-
sents the best case while the robustness represents the worst
case, which are reflected by the minimum and maximum MSE
across all images, respectively. The detailed evaluation result-
s and the average compute times of different matting methods
are shown in Table 2. Figure 5 shows the extracted mattes
obtained by different approaches for the donkey image. In

summary, our algorithm is demonstrated to achieve the com-
parable accuracy efficiently.

Matting Accuracy Robustness Compute
methods (Min MSE) (Max MSE) times(s)

Bayesian [7] 2.31 3.14 82.1
Shared [21] 0.88 1.30 0.065

Random walk [9] 2.40 2.91 4
Poisson [8] 5.94 6.50 25.7

Closed-form [10] 0.93 1.36 12.3
Iteractive BP [22] 1.48 2.23 320

Easy [11] 3.09 4.46 167.3
Robust [12] 0.89 1.58 2.09

Ours 1.04 1.34 0.24

Table 2. The quantitative evaluation on matting results.

5. CONCLUSIONS

This paper presents an automatic and nearly real-time video
foreground extraction system with no user interaction require-
ment. To achieve this goal, we first incorporate the salien-
cy detection and optimization-based segmentation to obtain
the foreground object automatically. Then, Bayesian matting
is used to refine the details after propagating the segmenta-
tion results in key frames to other frames. Experiments have
shown the efficiency, accuracy, and robustness of our system.
However, for now the proposed system has difficulty in han-
dling videos with complex background. In the future, we will
extend our framework to videos under illumination changes
and complex background.
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