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ABSTRACT 

 
Mixed images cannot be avoided in visual tracking since the 
transmitted scene may be captured with specular reflections. 
Since few previous methods tackle this important problem, 
this paper proposes a novel visual tracking method using 
Blind Source Separation (BSS) for mixed images. Based on 
the framework of particle filter with compensated motion 
model at the prediction stage for mobile cameras, this paper 
improves its correction stage by weighting particles using 
color histograms on the mixed image and intrinsic 
illumination image, based on the trichromatic and opponent-
process theories, respectively. Moreover, the weighting of 
each particle is optimized using Maximum Likelihood (ML). 
Experimental results show that the proposed scheme 
effectively improves the tracking accuracy on mixed images. 
 

Index Terms—Visual tracking, reflection, blind source 
separation, particle filter, correction stage 
 

1. INTRODUCTION 
 
Previous methods of visual tracking tackle mostly problems 
including partial occlusion, illumination variations, complex 
trajectory, camera motion, etc. To the best of our knowledge, 
few of them focus on reflection problem. In fact, for mixed 
images caused by specular reflections, inaccurate tracking 
results are easily raised due to the significant change of 
appearances of targets and/or the background.  

To improve the accuracy of a probabilistic based tracker 
in a dynamic or cluttered environment, a richer 
representation of the target may help the correction stage. 
For example, Wu et al [1] propose efficient and robust co-
inference tracking using two modalities of the target. Jin et 
al [2] propose an object model, mixing non-parametric 
contour and edge models. Tracking can be also casting as 
finding a sparse approximation in a set of the target template 
and trivial templates [3]. Such method is proved to be quite 
robust against various conditions such as occlusion. 

Blind source separation estimates source signals with an 
unknown mixing matrix from a set of mixed signals. For a 
mixed image including an intrinsic component and the 
specular reflection, separation methods use the linear 
mixing image formulation and assume that source signals 
are independent. Some of the reflection separation 

approaches are based on Independent Component Analysis 
(ICA) (e.g., [4]). They need at least two static mixed images 
with diverse conditions. Given two initial mixtures, it is 
proposed to separate two sources by minimizing their 
structural correlations [5]. Inspired by Sarel et al [5], the 
multiple generalized normalized gray-scale correlation 
assists iterative estimation of multiple sources [6]. 
Estimation can be under the sparse prior over derivative 
filters on natural images [7][8]. Separation from a single 
image can be achieved using manually marked small 
amount of edges [8] or minimizing the total amount of 
edges and corners [9].  Gai et al [10] further consider the 
diversities of layer motions. Instead of frame based 
reflection detection, the method in [11] uses tracking to 
detect reflectance regions in video frames. In addition, it 
proposes the concept of applying separation before object 
tracking in mixed images. 

Different from previous tracking methods and 
applications, this paper proposes a novel tracking method 
for mixed images with two layers, including the target and 
the reflection layers. Based on the framework of particle 
filter with motion compensated motion model at the 
prediction stage for mobile cameras [12], this paper 
improves the correction stage by weighting each particle 
using ML, where both the color histograms on the mixed 
and the intrinsic illumination images are observed. The 
intrinsic images are derived by Weiss’ separation method 
[7], not iterative and more suitable for real-time tracking.  

This paper is organized as follows. Section 2 and Section 
3 review the compensated motion model of visual tracking 
for mobile cameras [12] and the Weiss’ reflection separation 
[7], respectively. Section 4 proposes a novel method for 
visual tracking in mixed images and using ML to optimize 
the weight of each particle. Section 5 gives experimental 
results and Section 6 concludes this paper. 

 
2. VISUAL TRACKING USING COMPENSATED 

MOTION MODEL FOR MOBILE CAMERAS 
 
The particle filter (PF) implements the Bayesian filter 
recursively using the Monte Carlo method [13]. Bayesian 
tracking consists of prediction and correction to estimate the 
state over the posterior pdf. Prediction obtains the prior pdf 
of the state, tx ,  at time t  by 
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where 1: 1( | )t tp z z  is the normalization constant, depending 

on the likelihood function ( | )t tp z x   . For particle filter, the 

posterior pdf is approximated by a random measure, 
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where ( ) ( )
1: 1 1:( | , )i i

t t tq x x z   can be chose to be ( )
1( | )i

t tp x x . 

In visual tracking, both object and camera motions should 
be considered. A motion model including the control vector 
to compensate the global motion (camera motion) can 
improve the tracking accuracy [12].  At prediction stage, the 
state vector i

tx  of the ith particle at time t is predicted by [12] 
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where ( ) ( )
, ,[ , ]i i T

x t y tS S  and ( ) ( )
, 1 , 1[ , ]i i T

x t y tH H   are the position and scale of 

the target, respectively, ( )i
t  is Gaussian noise, , ,[ , ]Tx t y tG G  is 

camera motion, and ( ) ( )
, ,[ , ]i i T

x t y tW W  is the object motion on the 2-

D image after compensating the camera motion. 
At the correction stage, the object state is corrected using 

[14], where the weights of particles are computed using 
color information. Then the current state tx , is estimated 

using the minimum mean square error over the posterior 
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3. DERIVING INTRINSIC IMAGES FROM MIXED 

IMAGE SEQUENCES 
 
A mixed image, a mid-level description of scenes, can be 
decomposed into a reflectance image and an illumination 
image. Based on the sparse prior over derivative filters on 
the previous T frames, this paper adopts the method in [7] to 
estimate an illumination image of the current frame and to 
improve the tracking accuracy on mixed images. 

  Assume that the reflection is constant while the 
illumination changes. The method in [7] works in the log 
domain to recover ( , , )l x y t  and ( , )r x y  

( , , ) ( , , ) ( , )i x y t l x y t r x y  ,                    (6) 

where ( , , )i x y t  is the mixed image at time t, ( , , )l x y t  is the 

illumination image at time t, and ( , )r x y  is the reflectance 

image. Given N filters{ }nf , the output of the filter is 

 ( , , ) ( , , ) { }n no x y t i x y t f  ,                  (7) 

and, the filtered reflectance image is denoted by 
( , ) ( , ) { }n nr x y r x y f  .                       (8) 

With the assumption that the filtered ( , , )l x y t  of natural 

images is Laplacian distributed and independent over space 
and time, the likelihood is defined as 
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The ML estimate of the reflectance image is 
 ˆ ( , ) median ( , , )n t tr x y o x y t .                (10) 

Since 
 ˆ ˆn nf r r  ,                                           (11) 

the reflectance image can be obtained using the pseudo-
inverse solution  
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Finally, the illumination image is estimated by 

  ˆ ˆ( , , ) ( , , ) ( , )l x y t i x y t r x y  .               (14) 

 
4. THE PROPOSED VISUAL TRACKING SCHEME 

FOR MIXED IMAGES 
 
To improve the tracking accuracy on mixed images, this 
section proposes the Weiss mask generated from the 
intrinsic illumination image to improve the correction stage. 
The proposed scheme is stated as follows. 

1. Selection: Select N random samples from the previous 
state. 
2. Prediction with motion compensation model [12]: 
Estimate the camera motion using SURF. For each 
particle, predict its current state using the motion matrix 
and the control term, i.e. camera motion. 
3. Correction: Based on the RGB color histograms of the 
mixed image and the [I、R-G、Y-B] color histograms, 
determined by the Weiss mask of the illumination image, 
optimize the weight of each particle using ML. 

   The Weiss mask aims at indicating non-reflectance 
regions on each mixed image. To construct the Weiss mask, 
the intrinsic illumination image of the current frame is 
derived by the method in [7], using the previous five frames. 
In fact,  the estimated illumination image includes not 
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(a)                       (b)                      (c)                  (d) 

Figure 1. Test results of the proposed scheme on video #1. (a) 
Illumination image. (b) Reflectance image. (c) Weiss mask. (d) 
Mixed image. 

 
only the transmitted scene (Fig. 1(a)) but part of the 
reflectance image (Fig. 1(b)), caused by the camera motion 
or varying lighting. Thus, thresholding and morphology, i.e. 
erosion, dilation, and erosion, are applied to the illumination 
image to remove the noisy parts. In Figs. 1(c) and 1(d), the 
estimated object state is shown on the Weiss mask and the 
mixed image, respectively. 

Regarding color perception, physicists generally agree 
with the trichromatic theory, the Young-Helmholtz theory 
[15] of color vision. However, psychologists often agree 
with opponent-process theory, proposed by Hering [16]. 
Thus, at the correction stage of the proposed scheme, in 
addition to RGB color distribution, computed using the 
method in [17], the [I、R-G、Y-B] color distributions 
corresponding to the non-reflectance regions on the mixed 
image, indicated by the Weiss mask, and the rectangular 
region centered at a particle, are calculated to improve the 
tracking accuracy. The similarity between the region 
centered at each particle and the target template are then 
calculated using the Bhattacharyya distance/coefficient [17]) 

( ) ( )

1
1

m u u

u
d p q


                                     (15) 

where q   is the distribution of the target template, p   is the 

distribution of the candidate, and u is the index of a 
histogram bin. Assume that the Bhattacharyya distance of 
the RGB color space and that of the [I、R-G、Y-B] color 
space are independent, this section defines the likelihood of 
the nth particle as 
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where ,c W
t tz z are the measurement state of RGB and [I、R-
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Finally, given that ( )i
t  ranges from 0 to 1, (17) is 

maximized by  

 
( ) 2 2 ( ) 2 2

( )

( ) 2 2 ( ) 2 2

1,     ( ) 2 ( ) 2

0,     ( ) 2 ( ) 2  

i i
i t w t c

t i i
t w t c

dw dc

dw dc

 


 
  


.             (19) 

 
5. EXPERIMENTAL RESULTS 

 
The accuracy of the proposed scheme is evaluated using 
eight sequences. Samples of videos #1 and #3 are shown on 
Figs. 2 and 3, and the remains are given in Table I. The 
eight sequences are including seven mixed sequences and 
one without reflection. The first sequence, i.e. video #1, a 
mixed one, is from [5], and the last sequence, i.e. video #8, 
is from dataset 5 of 2001 PETS [19], without reflection. The 
other sequences, recorded by NCU VCLab in Taiwan, are 
captured under different conditions, including varying 
illumination, static or camera motion, single or multiple 
objects, and degree of reflection. From videos #1 to #3, the 
regions of targets on the first few frames do not contain the 
layer of reflection, whereas such regions on the latter frames 
always include the layer of reflection. From videos #4 to #7, 
the regions of targets on the first few frames contain the 
layer of reflection, whereas such regions on the latter frames 
may either include the layer of reflection or not. Videos #2 
to #7 are downsampled by the factor of 8 in both width and 
height before tracking. Regarding the test conditions of the 
proposed scheme, the number of particles is 50. The initial 
state is detected manually in the mixed image. The number 
of bins is eight in each color histogram. Variances 2

c  of 

and 2
w  are assumed to be the same.  

Few previous tracking methods focus on the reflection 
problem. Thus, the proposed scheme is compared with the 
fast L1 tracker [18], extended from [3], a state-of-the-art 
tracker. For frames with target occlusion, e.g. from t=25 to 
t=31 in video #1 (Fig. 2), both the proposed scheme and the 
L1 tracker work well. However, the proposed scheme 
outperforms the L1 tracker for frames with reflection, e.g. 
after t=35 in video #1 (Fig. 2). The target region, including 
the layer of reflection, will be quite different from the target 
template, constructed from the first frame without the layer 
of reflection. This will cause the significant difficulty in 
tracking. For example, for sequences with strong reflection, 
e.g. video #3, the L1 tracker fails since it cannot tell apart 
from the reflection and the target (Fig. 3). However, the 
proposed scheme keeps tracking the target well since it also 
refers to the reflection information from the Weiss mask. In 
contrast, if the target template is with reflection whereas the 
target region is not, it will be much harder to track 
accurately, e.g. video # 6 and video #7. 

To evaluate the tracking accuracy, the comparison of the 
tracking error with Root Mean Square Error (RMSE) 
between the proposed scheme (solid line) and the L1 tracker 
(dotted line) is given in Fig. 4. For each sequence, the value 
of RMSE at each time instant is the average of ten 
randomized tests. For the first few frames of all sequences,  
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Table 1. The first frames of test videos #2 and videos #4-#8. 

Video #2 Video #4 Video #5 Video #6 Video #7 Video#8

    

 

        
(a)                                                (b) 

Figure 2. Tracking results for video #1. (a) Proposed scheme. (b) 
L1 tracker. 
  

    
Figure 3. Comparison of the estimated states of the target by 
proposed scheme (orange) and L1 tracker (green) on video #3.   
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Figure 4. Comparison of the tracking accuracy between the 
proposed scheme and the L1 tracker [18].  
 
L1 tracker always has smaller RMSE than the proposed 
scheme. However, the L1 tracker fails in case of reflection 
while the proposed scheme works well. At the end of all 
sequences, the proposed scheme always leads to smaller 
RMSE than the L1 tracker. For video #8 that has no 
reflection, the proposed scheme is comparable to the L1 
tracker. To demonstrate the necessity of consideration of 
reflection information, the comparison of the tracking error 
(RMSE) between the proposed scheme (solid line) and the 
method in [12] (dotted line) is given in Fig. 5. For 
sequences captured by cameras on mobile platforms, e.g. 
video #8, the method with the motion compensated model in 
[12] can improve the tracking accuracy. For sequences with 
both the strong reflection and camera motion, e.g. video #7, 
the proposed scheme performs well since it significantly 
improves the method in [12] by revising the correction stage. 
   Finally, our analysis finds that most of the covariances of 
[18], [12], and the proposed method on videos #1-#8 
approach zero. Thus, the variances of the estimated x and y 
positions of the target on the last frame of each video are  
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Figure 5. Comparison of the tracking accuracy (RMSE) between 
the proposed scheme and the method in [12].   
 

Table 2 2 2( , )x y  , the variances of the estimated x and y positions 

of the target on the last frame of each video. 

 Video #1 Video #2 Video #3 Video #4 
[18] (133,24) (4,1) (94,1) (19,1) 
[12] (475,95) (7,3) (4,10) (6,11) 
Proposed (135,108) (5,9) (2,10) (7,9) 
 Video #5 Video #6 Video #7 Video #8 
[18] (60,23) (1,1) (466,31) (9,4) 
[12] (23,38) (2,3) (85,56) (519,297)
Proposed (5,24) (1,2) (15,4) (20,42) 

 
given in Table II. Compared with the method in [18] leading 
to small tracking errors on videos #2-#5 (Fig. 4), the 
estimated positions of the proposed method is more stable. 
Compared with the method in [12] that leads to small 
tracking errors on videos #2-#6 (Fig. 4), the estimated 
positions of the proposed method is also more stable. 

 
6. CONCLUSIONS 

 
Different from previous visual tracking methods, this paper 
proposes a novel method to improve the visual tracking 
accuracy in case of specular reflections in real world. The 
correction stage of PF is enhanced by maximizing the 
likelihood for each particle using both the color information 
of mixed images and intrinsic images. Experimental results 
show that the proposed scheme performs well in case of 
occlusion and reflection. In future work, information fusion 
at the correction stage of particle filter will be investigated 
to improve the reliability and robustness of the proposed 
scheme. 
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