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ABSTRACT

Data Association is probably the most important step of every
monocular Simultaneous Localization and Mapping (SLAM) algo-
rithm because it provides the basic information to the estimation
module, independently on the estimation algorithm of choice. Al-
though important, it is also a difficult task because the analytic
solution is NP-Hard. The usual approximation is obtaining only one
data association hypothesis per frame which affects the robustness of
the result [1][2][3][4][5]. In this paper, a data association approach
is presented, where multiple hypotheses are propagated between
frames using a probabilistic framework. Experimental results, using
real and synthetic data, show that the proposed algorithm produces
promising results with respect to other state of the art methods.

Index Terms— SLAM, data association

1. INTRODUCTION

SLAM algorithms concurrently solve two interrelated problems:
what is the current pose of the sensor (localization) and what does
the environment looks like (mapping). Solving these two problems
is difficult because localization depends on mapping and mapping
depends on localization, therefore, errors in any of these steps lead
to wrong map estimation and failure. SLAM is important because
it is the core algorithm in many applications such as augmented
reality, autonomous navigation in robots and aerial vehicles, among
others. In SLAM applications, the most commonly used sensors
are range-lasers, cameras and structured light sensors (e.g. Kinect).
Nevertheless, monocular-based localization and mapping is still
a very active topic of research because cameras are able to pro-
vide good resolution while being inexpensive portable devices. For
example, the camera on a mobile phone can be turned into an aug-
mented reality port where additional information can be displayed
to the user.

Monocular SLAM algorithms generally rely on four modules:
feature detection, data association, localization and mapping. From
these modules, data associations is one of the most important be-
cause it provides the essential information for estimating the current
pose of the sensor (localization) and it defines which features can
be added as new landmarks (mapping). It is also important because
once data association has been decided, it defines a lower bound on

the localization error, i.e. localization estimation error grows when
there are data association mistakes independently of the localization
algorithm that it is being used.

In this paper, a data association algorithm for monocular is pro-
posed. It is called Multiple Hypotheses Data Association (MHDA).
The main novelty of this paper is showing how the performance of
localization and mapping can be improved by propagating multiple
data association hypotheses between frames instead of propagating
only one strong hypothesis [1][2][3][4][5].

This paper is structured as follows: the state of the art and the
algorithm are explained in sections 2 and 3. Then experiments and
results are shown in section 4. Finally, some conclusions and final
remarks are presented in section 5

2. STATE OF THE ART

Data association is the name for the module that deals with the prob-
lem of associating, at each time step, landmarks from our map to ob-
served features from the image. Data association is sometimes called
matching or finding correspondences. In principle, and without any
prior information, every feature detected in each image is a possible
candidate for associating it with each of the landmarks in the map.
The simplest algorithms in data association are based on single can-
didate Nearest Neighbor approaches. For example, A.Davison et al.
pioneer work on monocular SLAM[6] used an Appearance Nearest
Neighbor approach based on Normalized Cross-Correlation (NCC)
patch distance. Later, J.Civiera et al.[3] improved on Davisons work
by filtering the output of the appearance Nearest Neighbor (NN) with
spatial information in the so called 1-point-RANSAC. The method of
Civiera works in three stages: (i) one correspondence is randomly
sampled from the set of probable matches and the pose is updated.
Based on the new pose, the rest of the matches are classified into in-
liers and outliers. (ii) The pose is refined using the information of all
inliers and the outliers set is searched again for correspondences that
comply with the new pose. This process is repeated several times
for different random correspondences in a RANSAC fashion. (iii)
Finally, the data association hypothesis set with highest number of
inlier correspondences and lowest jointly spatial error is chosen.

Single candidate approaches are appealing in real-time setups
because they are computationally inexpensive. Nevertheless, they do
not provide robust results because spatially close candidates may be
incorrect due to occlusions and pose estimation errors. Conversely,
there are false positives in appearance matches due to similar texture
in the image.
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Algorithm Spatial Appearance Multiple Intra-Frame Inter-Frame
Coherence Coherence Candidates Multip. Hypoth. Multip. Hypoth.

Spatial Nearest Neighbor x
Appearance Nearest Neighbor[6] x
1-point-RANSAC[3] x x x
Active Search[2] x x
Active Matching[4] x x x x
Scalable Active Matching[5] x x x x
Joint Compatibility Branch and Bound (JCBB)[1] x x x
MHDA (proposed) x x x x x

Table 1. Characteristics of different Data Association algorithms in literature. The first two columns describe which feature distance are
exploited by the algorithm. The upper rows show approaches that use only one candidate matching per feature while lower rows show
algorithms that use multiple candidate hypotheses per feature. The bottom row shows the characteristics of the proposed algorithm MHDA.

A.Davison also proposed a clever single candidate approach
called Active Search [2] based on Mutual Information. He showed
that it is possible to pre-calculate what is the amount of information,
with respect to the pose of the sensor, that one could gained by mea-
suring each of the landmarks. The gain in information is in bits. He
also defined a metric called measurement efficiency which is the ra-
tio between the mutual information associated to a landmark and the
work that one has to do in order to search this landmark according
to its uncertainty. Active Search is an iterative algorithm that works
as follows: It begins by searching, using patch appearance, the land-
mark associated with the largest measurement efficiency coefficient
in a Nearest Neighbor fashion. Associating the chosen landmark
to a likely patch candidate immediately reduces the uncertainty on
the position of other correlated features, and therefore the area re-
quired to search them. Active Search requires less image processing
and has better performance than other single candidate approaches.
However, it is greatly affected by false positives (repetitive texture)
due to the use of appearance NN approach.

M.Chli and A.Davison presented and enhanced version of the
Active Search algorithm called Active Matching[4]. The main im-
provements over their previous work were to employ multiple can-
didates matching for each landmark and to propagate multiple hy-
potheses within one frame. This new approach was able to better
handle ambiguities that arise within a frame while using a computa-
tionally efficient algorithm based on Gaussian Mixture Model.

In the multiple candidate group, one can find the important work
of J. Neira and J.D. Tardós called Joint Compatibility Branch and
Bound (JCBB)[1] which has been widely adopted in the SLAM
community. JCBB casts the data association problem into a tree
search problem based solely on spatial coherence. This algorithm
does work very well in practice but it tends to be computationally
expensive (beyond the real time usage). JCBB is a conservative ap-
proach which avoids exhaustive enumeration of the data association
hypotheses by cutting off some branches of the tree that fall under a
lower bound on the number of matches that can be achieved. Finally,
the association set with largest number of matches and lower spatial
distance errors is chosen.

In the last years, one branch of SLAM research has focused
in single candidate approaches by improving the reliability of
appearance descriptors such as Scale Invariant Feature Trans-
form (SIFT)[7], Speeded-Up Robust Features (SURF)[8] and more
recently Binary Robust Invariant Scalable Keypoints (BRISK)[9].

Efforts have also been held into increasing the precision of SLAM
estimation by including large number of features. A.Handa et al.
proposed an algorithm based on Active Matching called Chow Liu
Active Matching (CLAM) and Subset Active Matching (SubAM)[5]
that is able to scale well with the number of landmarks. Despite the
efforts into making SLAM algorithms faster and more precise, not
much has been done into making them more robust by propagating
multiple data association hypotheses among different frames. In
this paper, an algorithm inspired on object tracking probabilistic
modeling and Active Search[2] is proposed. The presented approach
relies on the particle filter framework in order to keep multiple
data association hypotheses within one frame and between different
frames.

Table (1) summarizes the characteristics of some important al-
gorithms proposed in literature for data association in SLAM appli-
cations.

3. PROPOSED ALGORITHM

In the first part, the theoretical grounds of the probabilistic modeling
will be briefly described. This section explicitly states the assump-
tions that are made in the probabilistic modeling of the problem.

3.1. Probabilistic Modeling

Lets assume that at each time step t, x is the total state of the system
modeled as a Gaussian random stacked vector formed by the pose of
the system xv and N tracked landmarks xi = (x1, ...,xN )T . The
measurement process is governed by

zi = hi(x) + ni (1)

with hi a function that describes the transformation of the state
space into the observation space ẑi and ni is a zero mean Gaussian
variable with covariance Ri which represents the noise in the sen-
sor measurement. Lets define the mean vector of the state x̂m and
covariance matrix Pm as

x̂m =


x̂t

ẑ1

ẑ2

...

 =


x̂t

h1(x̂)
h2(x̂)

...

 (2)
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Fig. 1. The image sequence shows an example when the proposed algorithm recovers after modifying the position of an object in the scene.
The ellipses represent the uncertainty on the position of different features. Red and blue ellipses represent landmarks that are successfully
and unsuccessfully matched in the current frame, respectively.

Pxm =


Px Px
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 (3)

Pxm =


Σxx Σxy1 Σxy2 . . .
Σy1x Σyy1 Σy1y2 . . .
Σy2x Σy2y1 Σyy2 . . .

...
...

...

 (4)

Vector x̂m and covariance Pm are used in order to calculate the
the Mutual Information described later in Subsection 3.2. The lower-
right part of the matrix from eq.3 and eq. 4 is known as the innova-
tion covariance S in the Kalman Filter.

3.2. Algorithm

The Particle Filter consists in approximating the marginal proba-
bility distribution at time t with a sum of P weighted delta-Diracs
called particles

p(xt|z1:t) ≈
∑

j=1:P

w
(j)
t δ(xt − x

(j)
t ) (5)

where the weights can be calculated using Sequential Impor-
tance Sampling (SIS) as

w
(j)
t ∝ w(j)

t−1

p(zt|xt)p(xt|xt−1)

q(xt|xt−1, zt)
(6)

Equation (6) is the traditional way to calculate the weights in the
particle filter framework but it does not take into account the problem
of data association. In this algorithm, an object tracking probabilistic
model similar to the one proposed in [10] is used. In particular, the
weights are calculated as

w
(j)
t ∝ w(j)

t−1

Nt∏
i=1

p(z|x, r)p(r|NC,xfound)p(NC)p(xfound) (7)

Where r is a random vector for associating the landmarks to dif-
ferent observations, p(NC) is a Poisson probability distribution with
parameter NC for modeling the number of clutter observations in
the image, p(xfound) is a binomial probability distribution for mod-
eling the fact that we do not detect the landmarks in every frame
and p(z|x, r) is a multinomial probability distribution that models
the likelihood of associating each landmark to the different observa-
tion candidates. More precisely, the probability of a landmark to be
found is given by

p(xfound,i) = [Ppresent ∗ Psearch]xfound,i ×

[(1− Ppresent) + Ppresent ∗ (1− Psearch)](1−xfound,i)

(8)

In practice, the probability of finding a landmark is modeled
as the probability (Ppresent) that it is present in the image and it
is inside the search area (Asearch,i). Where Asearch,i is defined as
the area around the predicted position of the landmark containing
Psearch probability mass. An example of the landmark search area
can be seen as ellipses in fig.(1). The probability of not finding the
landmarks is the sum of the probabilities that either the landmark
is not visible or it is present but outside of the search area Asearch,i.
Ppresent is a parameter of the algorithm that can be seen as a measure
of how likely is a landmark to appear at every frame while Psearch

is a parameter that sets a trade-off between robustness and process-
ing time, i.e. values close to 1 for Psearch makes the search area
Asearch,i to be large so it is more likely to find the landmarks if they
are present while low values of Psearch makes Asearch,i to be smaller
and more likely to miss some associations.

3.2.1. Managing the particles

At each time step, P particles indexes are sampled from eq. (5) ac-
cording to their weights. The number of drawn indexes for each
particle indicates how many ”child particles‘ should be spanned.
For example, lets suppose that there are two particles, each one
with weight w(0)

t = w
(1)
t = 0.5. Lets also consider that the in-

dexes idx = {0, 1} are drawned from (5)). This means both parti-
cles continue to be alive. Then suppose that particles have weights
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Algorithm Position Orientation Landmarks Averg. time
Error Error Error per frame (ms)

Spatial Nearest Neighbor 0.55381 0.02576 5.17722 40.0957
Appearance Nearest Neighbor[6] 3.72404 0.11035 313.843 35.5125
1-point-RANSAC[3] 0.07079 0.00691 0.93737 97.9692
Active Search[2] 1.70737 0.11729 19.29290 20.04350
Active Matching[4] 0.28598 0.010324 0.97682 58.621
JCBB[1] 0.13856 0.01011 1.19577 1380.81
MHDA (proposed) 0.00687 0.00724 0.22388 51.545

Table 2. Results for first 200 frames of ”Over the table‘ sequence (publicly available[5]). Image dimension are 640x480

w
(0)
t = 0.1 and w(1)

t = 0.9 and indexes idx = {1, 1} the drawn
instead. This means that the first particle cease to exist due to its low
weight and the second particle should span a new ”child particle‘.

3.2.2. Measuring the landmarks in each particle

The Mutual Information(M) and measurement efficiency are calcu-
lated as proposed by A.Davison in Active Search[2]

Meff,i = Mi/Asearch,i (9)

With the Mutual information of landmark xi calculated as

Mi = 0.5 ∗ log2
|Σxx|

|Σxx − ΣyixΣ−1
yyiΣxyi |

(10)

Even if mutual information is also used in MHDA for guiding
the search in the image, the iteration over the landmarks is performed
differently. Instead of iterating the landmarks deterministically as in
[2], landmarks are iterated in a random way by sampling one land-
mark proportionally to Meff . So landmarks that have large values of
Meff are still more likely to be measured first. Nevertheless, since
different particles iterate over the landmarks in a different way, it
makes the algorithm more robust to ambiguities within the frame.

3.2.3. Difference with other approaches

Another main difference of the proposed algorithm with respect to
the original Active Search algorithm[2] is that it relies on a com-
bined score from spatial and appearance coherence. Furthermore,
MHDA propagates different association hypotheses in different par-
ticles which makes it more difficult to fall in errors due to ambigu-
ities in one landmark measurement. Multiple Hypotheses Data As-
sociation (MHDA) is also different to Active Matching in the sense
that it is based on parallel inference using particles instead of multi-
ple hypotheses using a mixture of Gaussians.

4. EXPERIMENTS AND RESULTS

The proposed algorithm has been implemented on top of a in-
house version of the publicly available MonoSLAM[11] ported
to windows by using Eigen Library and Mobile Robot Program-
ming Toolkit (MRPT) Library[12]. Additionally, inverse depth
parametrization[13] and patch warping have been ported from
J.Civiera matlab code found in [14]. All of the algorithms in the
comparison of table 2 are implemented in c++. Some of them have
been found already implemented in c++ and all others have been
ported from matlab such as the 1-Point RANSAC algorithm. For

JCBB, it has been used a version of the algorithm found in the
MRPT Library which has been ported into c++ from the original
matlab code.

The parameters used in all of the experiments are Ppresent = 0.9
and Psearch = 0.95 which corresponds to approximate 2.5 stan-
dard deviations area search. The clutter mean NC has been set to 20
which corresponds to having and average of 20 false positive obser-
vations per image.

4.0.4. Synthetic Dataset

The experiments are performed on a publicly available dataset called
“over the table”[5]. This dataset is a synthetic photo-realistic image
sequence generated by POVRay with a 640x480 image resolution.
This dataset provides ground truth pose of the camera and depth dis-
tance for every pixel at every time frame. Therefore, quantitative re-
sults from camera pose and the landmarks reconstruction can be ob-
tained. The sequence is in an office context and it contains different
challenging situation such as repetitive texture (such as keyboards,
telephone buttons, etc), objects at different depth planes and several
short and long term occlusions. Table 2 summarizes the obtained
results. It is possible to see that the two flavors of NN together with
Active Matching have the largest error values. Specially, the algo-
rithms that rely only in appearance have problems due to repetitive
texture in the scene. One exception is the 1-Point RANSAC which
provides good results over all. Nevertheless, it has been observed
that 1-Point RANSAC algorithm has difficulties in converging to the
real 3D position of the landmarks caused by the difference in depths
planes in the scene, i.e. the depth plane that has the majority of
landmarks biases the estimation and landmarks in different depth
planes are always taken as outliers. In general, Active Matching and
JCBB have similar performances but the former one is in average 26
times faster. The proposed MHDA algorithm with only 2 particles
provides the best performance while requiring low processing time.
Since the processing done by MHDA in each particle is simpler than
the Gaussian mixture propagation done in the Active Matching al-
gorithm, the time required to run one particles of MHDA is faster
than running AM in a frame basis. Nevertheless, propagating multi-
ple weak hypotheses over the frames is able to produce better results
over time. Although the used implementations were from different
sources and some of them are perhaps more optimized than others,
we believe that the results still give a good general understanding of
the relative speeds.
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4.0.5. Real sequence

The experiments with real sequences were performed with real-time
tracking using a webcam with a wide angle lens (See fig. 1) at a
480x320 image resolution. This resolution has been chosen because
it allows real-time tracking. From all the tested algorithms, only Ac-
tive matching and the proposed algorithm MHDA are able to keep
up with real-time usage. The performance of Active Matching and
MHDA is similar when there are not many association ambiguities.
Nevertheless, the proposed algorithm is able to recover for ambigu-
ous situations that can last a couple of frames due to the fact that it
keeps multiple hypotheses over time. MHDA is able to run at about
30fps with around 50 features using non-optimized c++ code.

5. CONCLUSIONS

It this paper, an algorithm called Multiple Hypotheses Data Asso-
ciation (MHDA) has been proposed. This approach is inspired on
object tracking probabilistic modeling and A.Davison Active Search
algorithm. It has been shown, using synthetic and real sequences,
promising results by propagating multiple “weak” hypotheses over
time instead of propagating only one strong hypothesis. It has also
been shown that the proposed algorithm is suitable for real-time
monocular SLAM applications running with a 480x320 resolution.
Further work will focus on optimizing the code using a GPU in order
to process the particles in parallel.
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