
A CLUSTERING APPROACH FOR DETECTING MOVING OBJECTS CAPTURED BY A
MOVING AERIAL CAMERA

Joseph DeGol

University of Illinois at Urbana-Champaign
Department of Computer Science

Urbana, IL 61801 USA

Myra Nam

MIT Lincoln Labratory
Intelligence and Decision Technologies

Lexington, MA 02420 USA

ABSTRACT

We propose a novel approach to motion detection in

scenes captured from a camera onboard an aerial vehicle. In

particular, we are interested in detecting small objects such

as cars or people that move slowly and independently in the

scene. Slow motion detection in an aerial video is challeng-

ing because it is difficult to differentiate object motion from

camera motion. We adopt an unsupervised learning approach

that requires a grouping step to define slow object motion.

The grouping is done by building a graph of edges connect-

ing dense feature keypoints. Then, we use camera motion

constraints over a window of adjacent frames to compute a

weight for each edge and automatically prune away dissimilar

edges. This leaves us with groupings of similarly moving fea-

ture points in the space, which we cluster and differentiate as

moving objects and background. With a focus on surveillance

from a moving aerial platform, we test our algorithm on the

challenging VIRAT aerial data set [1] and provide qualitative

and quantitative results that demonstrate the effectiveness of

our detection approach.

Index Terms— Aerial video, slow motion detection, clus-

tering, and graph representation.

1. INTRODUCTION
We address the problem of motion detection from video cap-

tured by a moving camera. In particular, we focus on data

captured from a camera on board an aerial vehicle flying

over regions of interest. The captured scene may contain

large camera motions from aircraft instability and may have

a large number of objects moving at various rates throughout

the scene. Our goal is to segment the moving objects in the

scene by leveraging the differences between each object‘s

motion and background motion induced by the moving cam-

era. There are many applications of this research including

video surveillance, activity analysis, and robot and drone

navigation [2, 3, 4].

Motion detection is a fundamental computer vision prob-

lem. It has been well studied with early work often leveraging

the assumption that the scene was captured with a stationary

camera [5, 6, 7, 8, 9]. This assumption simplifies the problem

because object motion becomes the only motion in the scene.

For video captured from mobile platforms such as robots and

mobile phones, however, the stationary camera assumption

can become invalid. Relaxing the stationary camera assump-

tion presents many challenges. In a scene captured by a mov-

ing camera, the motion no longer comes just from object mo-

tion, but also from camera motion and scene geometry. In

addition, the effects of each motion type vary depending on

the velocity of the camera and objects, and the distance of the

camera from the scene.

Traditional approaches for motion detection from video

captured by a moving camera include background subtraction

[10, 11, 12]. In addition, geometric, shape, and camera con-

straints have also been shown to be useful for motion detec-

tion, leveraging strong parallax by a perspective angle from

a mid-range aerial view [13, 14, 15, 3, 16]. The most related

work to this paper is the work by [17, 18]. They leverage long

term trajectories for motion segmentation. However, these

approaches explore close range activities with large moving

objects in the scene.

For scenes captured from an aerial vehicle, camera mo-

tion is the dominant factor due to the large distance between

the camera and the scene being captured; this makes object

motion detection challenging for several reasons. Because

the camera is mounted to an aerial vehicle, it is subjected to

vibration, instability, and sometimes-violent motion. More-

over, due to the large distance between the camera and scene,

these vibration and instability effects are only magnified. Not

only does this cause groups of successive blurred frames, but

it also induces large motions on the scene [1]. Couple these

large motions with the comparatively slow pace of human and

vehicle movements, and the motion of objects becomes diffi-

cult to discern, which is addressed as a challenging problem

in [19]. In addition, the large distance between the camera

and scene makes the geometry negligible, severely limiting

the effectiveness of epipolar constraint based methods [3, 2].

Figure 1 provides detailed depictions of the aforementioned

challenges.

Given a scene captured from a camera on board a moving

aerial vehicle, the proposed method is capable of detecting

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 6588

Fig. 1: A Depiction of the Challenges. Left: the dynamic

camera path (blue) has high frequency jitter and undesirable

motions. It makes it difficult to differentiate slow object mo-

tion (red and green) from dynamic camera motion. Right: the

sporadic motion of the camera causes motion blur and double

image effects.

minor object movement in the scene. For data captured from

a moving aerial vehicle, we propose a novel framework that

builds on the intuition that long-term trajectories of moving

objects in a scene can be differentiated from long-term tra-

jectories of stationary objects with induced camera motion.

Having long windows of trajectories allows us to discriminate

slowly moving objects from stationary scenery. The contribu-

tions of our paper are:

• Robustness against large camera motion in aerial video.

Video stabilization is not required as a preprocessing

step.

• No requirement of object detection. Without incorpo-

rating any prior knowledge on moving objects, we de-

tect object-level motion in an unsupervised fashion.

• High tolerance for detecting slowly moving objects. In

the aerial video domain, we leverage long-term range

trajectories to detect motion in a robust way.

We propose a novel method to motion detection that lever-

ages camera motion and keypoint trajectories over long win-

dows of frames in order to cluster trajectories into individ-

ual object motions and a single background motion. Having

long windows of trajectories allows us to discriminate slowly

moving objects from stationary scenery; something that has

proven difficult with other methods [19]. We define an at-

tributed graph where each node is a motion trajectory and

each weighted edge indicates the level of similarity between

two given trajectories. Using automatic edge pruning, we dis-

connect dissimilar trajectories and identify clusters from the

remaining connected components. Each cluster then corre-

sponds to trajectories of the background or moving objects in

the scene. We offer both qualitative and quantitative results

for the challenging and relatively unexplored VIRAT aerial

data set [1]. The proposed method provides an early attempt

at overcoming some of the new challenges this data set offers.

Next, we detail the method in Section 2. We continue in Sec-

tion 3 with a discussion of the results and future work on the

VIRAT aerial data set.

Fig. 2: Partitioning the sequence into windows. We partition

the video frames by using a sliding window of size T with a

shift of size S.

2. METHOD
This section details slow motion detection from video cap-

tured by an airborne camera. In order to detect motion in a

given scene, we build a graph of keypoint trajectories and

cluster them based on the difference between neighboring

edge-connected keypoints’ long term motion trajectories.

2.1. Building Graphs from Keypoint Trajectories

We partition a video sequence into time windows of size T

with a shift of S frames to obtain short-term keypoint trajecto-

ries. Figure 2 depicts the time window partitioning. We begin

by using the Kanade-Lucas Tomasi (KLT) Tracker [20, 21]

to track the keypoint trajectories. Once keypoint trajectories

are found, we prune away any trajectories that do not last the

entirety of the time window. The set of stable keypoint tra-

jectories is used to construct a graph G(v, e) within each time

window. Each vertex v of the graph represents a separate key-

point trajectory. The edges of the graph are then connected

using a Delaunay Triangulation [22, 26]. Figure 3a depicts

the resulting graph.

The graph node represents the keypoint trajectory over the

time window. We compute the graph node attributes to rep-

resent how the keypoint trajectory fits its respective estimated

camera motion trajectory. We leverage the camera motion to

differentiate moving objects from the stationary background.

The camera motion is estimated by RANSAC [23] with the

KLT keypoints. The estimated homography matrix is an esti-

mate of how the camera moved between frames. This means

that the stationary keypoints in one frame, when transformed

by the estimated homography matrix, should match their cor-

responding keypoints in the next frame. On the other hand,

the non-stationary keypoints will not match because their mo-

tion was influenced both by the camera motion and their own

independent motion.

Using the first frame as our reference, we compute the

homography matrices over the time window. We construct

a 1 × T feature vector Vd that characterizes the discrepancy

between the keypoint motion and the camera motion induced

at the same point, given by

Vd(t) =
√
(v(t)−Ht(v(t)))2 (1)

6589

(a) (b) (c)

Fig. 3: From Feature Points to Clusters: (a) We construct a graph G(v, e) where the vertices v shown in red are KLT keypoints

and the edges e shown in blue are defined by the Delaunay Triangulation. (b) We prune edges e for each graph G(v, e) by

calculating a threshold for each vertex and pruning edges with weight above this threshold. (c) Overlapping windows will cause

more than one graph for a given frame. We merge these graphs by keeping any edge that exists in at least half of the graphs.

where v(t) is the keypoint location and Ht is the estimated

homography function at window t (t = 1, 2, ..., T). The edge

weight is computed based on dissimilarity between the mo-

tion trajectories of the two connected verticies i and j. The

edge weights are given by

ω(V i
d , V

j
d) =

T∑

t=1

t∑

t′=1

|V i
d (T − t′)− V j

d (T − t′)|. (2)

where V i
d and V j

d represent the feature vector Vd from Equa-

tion 1 for two vertices i and j.

This metric is similar to the Match distance [24], a special

case of the Earth Movers distance that perceptually measures

the differences by comparing cross-bins in histogram com-

parison. Instead, we use the cumulative vector of the absolute

differences between two trajectories to deal with negative vec-

tor elements. The accumulation is in a reverse order in order

to maximize the motion differences.

2.2. Automatically Pruning Edges

Once edges have been assigned, we prune edges between dis-

similarly moving objects; in this case, moving objects and

stationary objects. Rather than using a hard threshold, we

formulate a simple method based on [25] for automatically

finding a threshold value for a local set of edges around a

keypoint. First, we define a Noise Index NI(v) for each key-

point v where NI(v) = LocalMean(v) / GlobalMean. Here,

LocalMean(v) is calculated by summing of the edge weights

of all connected neighbors of keypoint v and then dividing by

the number of connected neighbors of keypoint v. Similarly,

GlobalMean is calculatd simply taking the mean of all edge

weights. Next, we define a tolerance T (v) = StandardDe-
viation(v) / NI(v) where StandardDeviation(v) is calculated

by taking the standard deviation of the edge weights of all

connected neighboring keypoints to v. Finally, we define the

cut-off threshold F (v) = GlobalMean + T (v).
Then, we prune edges of keypoint v if the edge weight is

greater than the corresponding cut-off threshold F (v). Re-

peating this process for each keypoint results in a pruned

graph. An example pruned graph is shown in 3b.

2.3. Merge Graphs and Differentiate Moving Objects

Depending on the choice of window size T and the time shift

S, it is possible to have several different graphs representing a

given frame. Thus, it is necessary to merge these graphs into

one representation of the frame. To merge several graphs, we

employ a simple voting strategy. For a given edge, it must

exist in at least half of the graphs representing the frame for it

to exist in the final merged graph. For example, if we have 3

graphs for a frame, an edge must exist in 2 of the graphs for

that edge to be merged into the final graph; a depiction of the

merging process that matches the given example is shown in

Figure 3c. This strategy works well because it does an addi-

tional round of pruning to fully separate the edges of moving

objects from the background.

Once the graphs for a frame are merged into a final graph,

we differentiate the clusters representing the moving objects

from the stationary background cluster. To do this, we sim-

ply remove any clusters above a certain number of keypoints.

This leaves us with only clusters that our algorithm has de-

tected as moving objects.

3. RESULTS AND DISCUSSION
We demonstrate the effectiveness of our algorithm by present-

ing both quantitative and qualitative results using the VIRAT

aerial data set. To show the improvements made by our sys-

tem, we make a comparison with a baseline system that is

created by setting shift S = 1 which removes overlapping

frames and nullifies the merging and voting portions of our

algorithm. For the full method, the parameters we used were:

window size T = 25; shift S = 5; Max Cluster Size = 20.

We tested our algorithm on three different scenes. These

scenes differ in terms of object motion speed, object size, and

camera distance. Figure 4 provides the qualitative results for

our three scenes and Table 1 provides the corresponding quan-

titative results, which were calculated using precision and re-

call rates. In our case, the true positives are calculated by the

number of objects that are correctly detected, i.e. one cluster

for one object. When an object is not detected, this is a false

negative, and when an object is detected where it shouldnt be,

this is a false positive. To decide if an object was correctly

6590

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 4: Tracking results on Scene A, B, and C: (a-e) are frames of Scene A. The red and cyan boxes show the algorithm detecting

the moving people; (f-j) are frames of Scene B. The red box represents the algorithm detecting the moving person; (k-o) are

frames of Scene C. The red and cyan boxes show the algorithm detect the moving vehicles.

detected, we use one standard measure: the intersection of

union areas between the detected bounding box and the anno-

tated bounding box must be above 50% to be a true positive.

The incorporation of overlapping windows with merged

frames improves recall for all three scenes. This can be seen

in Table 1 where we achieve superior recall for all three scenes

with values of 59.7%, 94.2%, and 98.7% respectively. Note

that although the baseline method achieves higher precision

than the full method for scene B, for all scenes the full method

is still superior because the miss rate (i.e low recall) far out-

weights the slight advantage in precision. We reason that the

baseline method is unable to find significant differences be-

tween the moving and stationary objects because of limited

stable trajectories for short windows of time. By leverag-

ing overlapping windows and merging, the full method has

the added benefits of four additional graphs that span an ex-

tra 20 frames (assuming T = 25 and S = 5); increasing

the number of stable trajectories and the span of frames for

which discrepancies between camera and object motion can

accumulate. These benefits are particularly noticable when

comparing baseline recall between scene C and A because the

moving objects in C move faster through the scene where the

discrepancies accumulate faster. For scene A, however, the

moving objects are moving slowly and the baseline doesn’t

have enough frames to accumulates large discrepancies for

clustering moving objects. By incorporating the overlapping

windows with merging, the full method is able to leverage

additional frames and trajectories, making discrepancies ac-

cumulate, and improving the clustering. Thus, we see that

our windowing approach improves motion detection; particu-

larly for slow moving objects. In addition, we achieve good

Fig. 5: Failure Cases. Left: Two objects are close and moving

at similar rates, so they are clustered together. Right: One

large object gets split into several clusters.

Prec/Rec(%) Frames Baseline Full Method

Scene A 100 68.1 / 29.6 88.9 / 59.7

Scene B 350 100 / 48.7 98.5 / 94.2

Scene C 300 51.6 / 54.2 64.4 / 98.7

Table 1: This table shows the computed precision and recall

precentages for the number of frames for each scene.

results despite sporadic camera motion inherent to the data

and without the need for object detection. Lastly, there are

two main failure cases (Figure 5) which occur when two ob-

jects are close together and moving at similar rates, or when

one large object gets split into several clusters. We will ad-

dress these fail cases in future work by incorporating addi-

tional measures into the edge weight. One possibility would

be to incorporate pixel intensity histograms for the triangular

regions between edges as demonstrated in [26].

Acknowledgement: This work is sponsored by the

Department of the Air Force under Air Force Contract

#FA8721−05−C−0002. Opinions, interpretations, con-

clusions and recommendations are those of the author and are

not necessarily endorsed by the United States Government.

6591

References

[1] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cun-

toor, C.-C. Chen, Jong Taek Lee, Saurajit Mukherjee, J. K.

Aggarwal, Hyungtae Lee, Larry Davis, Eran Swears, Xioyang

Wang, Qiang Ji, Kishore Reddy, Mubarak Shah, Carl Vondrick,

Hamed Pirsiavash, Deva Ramanan, Jenny Yuen, Antonio Tor-

ralba, Bi Song, Anesco Fong, Amit Roy-Chowdhury, and Mita

Desai, “A large-scale benchmark dataset for event recognition

in surveillance video,” in IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2011.

[2] Harpreet S. Sawhney, Yanlin Guo, and Rakesh Kumar, “Inde-

pendent motion detection in 3d scenes,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp.

1191–1199, Oct. 2000.

[3] Chang Yuan, G. Medioni, Jinman Kang, and I. Cohen, “De-

tecting motion regions in the presence of a strong parallax from

a moving camera by multiview geometric constraints,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,

vol. 29, no. 9, pp. 1627–1641, 2007.

[4] Jong Taek Lee, Chia-Chih Chen, and J.K. Aggarwal, “Rec-

ognizing human-vehicle interactions from aerial video without

training,” in IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2011, pp. 53–60.

[5] Ismail Haritaoglu, Davis Harwood, and Larry S. David, “W4:

Real-time surveillance of people and their activities,” IEEE
Transactions on Pattern Analysis Machine Intelligence, vol.

22, no. 8, pp. 809–830, Aug. 2000.

[6] Chris Stauffer and W. Eric L. Grimson, “Learning patterns

of activity using real-time tracking,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp.

747–757, Aug. 2000.

[7] A. Elgammal, R. Duraiswami, D. Harwood, and L.S. Davis,

“Background and foreground modeling using nonparametric

kernel density estimation for visual surveillance,” Proceedings
of the IEEE, vol. 90, no. 7, pp. 1151–1163, 2002.

[8] Omar Javed, Khurram Shafique, and Mubarak Shah, “A hier-

archical approach to robust background subtraction using color

and gradient information,” in Workshop on Motion and Video
Computing. 2002, MOTION ’02, pp. 1–6, IEEE Computer So-

ciety.

[9] Y. Sheikh and M. Shah, “Bayesian object detection in dynamic

scenes,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2005, vol. 1, pp. 74–79 vol. 1.

[10] Rita Cucchiara, Andrea Prati, and Roberto Vezzani, “Real-time

motion segmentation from moving cameras. real-time imag-

ing,” Real-Time Imaging, vol. 10, pp. 127–143, 2004.

[11] Dong Zhang and Ping Li, “Motion detection for rapidly mov-

ing cameras in fully 3d scenes,” in Pacific-Rim Symposium on
Image and Video Technology, 2010, pp. 444–449.

[12] Ali Elqursh and Ahmed Elgammal, “Online moving camera

background subtraction,” in European Conference on Com-
puter Vision, Berlin, Heidelberg, 2012, pp. 228–241, Springer-

Verlag.

[13] William B. Thompson and Ting-Chuen Pong, “Detecting mov-

ing objects,” International Journal of Computer Vision, vol. 4,

no. 1, pp. 39–57, 1990.

[14] R.C. Nelson, “Qualitative detection of motion by a moving ob-

server,” in IEEE Conference on Computer Vision and Pattern

Recognition, 1991, pp. 173–178.

[15] Jinman Kang, I. Cohen, G. Medioni, and Chang Yuan, “Detec-

tion and tracking of moving objects from a moving platform in

presence of strong parallax,” in IEEE International Conference
on Computer Vision, 2005, vol. 1, pp. 10–17.

[16] Andreas Wedel, Annemarie Meißner, Clemens Rabe, Uwe

Franke, and Daniel Cremers, “Detection and segmentation

of independently moving objects from dense scene flow,” in

International Conference on Energy Minimization Methods in
Computer Vision and Pattern Recognition, 2009, pp. 14–27.

[17] Thomas Brox and Jitendra Malik, “Object segmentation by

long term analysis of point trajectories,” in European Confer-
ence on Computer Vision, 2010.

[18] P. Ochs and T. Brox, “Object segmentation in video: a hier-

archical variational approach for turning point trajectories into

dense regions,” in IEEE International Conference on Com-
puter Vision, 2011.

[19] G. Georgiadis, A. Ayvaci, and S. Soatto, “Actionable saliency

detection: Independent motion detection without independent

motion estimation,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2012, pp. 646–653.

[20] J. Shi and C. Tomasi, “Good features to track,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, 1994, pp.

593–600.

[21] Carlo Tomasi and Takeo Kanade, “Detection and tracking of

point features,” Tech. Rep. CMU-CS-91-105, Carnegie Mellon

University, Pittsburgh, PA, 1991.

[22] L. Paul Chew, “Constrained delaunay triangulations,” Algo-
rithmica, vol. 4, pp. 97–108, 1989.

[23] Martin A. Fischler and Robert C. Bolles, “Random sample

consensus: a paradigm for model fitting with applications to

image analysis and automated cartography,” Communications
of the ACM, vol. 24, no. 6, pp. 381–395, June 1981.

[24] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas, “The

earth mover’s distance as a metric for image retrieval,” Interna-
tional Journal of Computer Vision, vol. 40, no. 2, pp. 99–121,

Nov. 2000.

[25] Vladimir Estivill-castro and Ickjai Lee, “Amoeba: Hierarchical

clustering based on spatial proximity using delaunay diagram,”

in International Symposium on Spatial Data Handling, 2000,

pp. 7–26.

[26] D. Sugimura, K.M. Kitani, T. Okabe, Y. Sato, and A. Sugi-

moto, “Using individuality to track individuals: Clustering in-

dividual trajectories in crowds using local appearance and fre-

quency trait,” in IEEE International Conference on Computer
Vision, 2009, pp. 1467–1474.

6592

